VISUALIZING EXECUTION PATHS

Martin E. Ebersole and Christopher A. Healy

Department of Computer Science

Furman University

Greenville, SC 29613

ABSTRACT

Trying to understand assembly code can be a difficult or unpleasant task for many computer science students. Even if the code is well structured and documented, it is rather tedious to determine manually all the execution paths. Running the program multiple times may miss some possible paths that the user did not consider. Thus, for the purposes of pedagogy and testing, there is a need for a static tool that can analyze assembly code and emit information about all execution paths. This paper describes a software tool called PathViz that allows a user to observe the complete path and block structure of a computer program. The tool reads assembly code and control-flow information in order to generate the set of paths. A graphical user interface appears to allow the user to query about any portion of the program. PathViz operates efficiently since it does not actually run the input program. Furthermore, the implementation of PathViz makes it amenable to porting to a different assembly language.

1. INTRODUCTION

When students take a computer organization or systems class, they are first confronted with the appearance of low-level assembly code. For many it is a rude awakening because assembly code is rather inscrutable, compared to code of a high-level language (HLL) such as Pascal, C or Java. Few students will go on to become assembly programmers, but the reason why we learn assembly is that low-level code is what executes on the machine. So one goal of such a class is for students to be able to understand the correspondence between high and low level code. This way, they can gain an appreciation of what happens when a high-level program is compiled.

The purpose of this work is to help students, especially visual learners, better understand assembly code. The authors have created a tool called PathViz that takes an assembly program as input, and then uses a GUI implemented with Java Swing components to depict the structure of this program, down to the basic block level. For each function and loop in the program, PathViz shows all the possible execution paths.

2. PREVIOUS WORK

GUIs for analyzing assembly code have been around since the mid 1990s [2]. However, most have been designed with compiler writers and experienced programmers in mind. Generally, they have been written for a single platform and are difficult to port to a new language or architecture. Boyd et al. [2] wrote a GUI called xvpodb whose purpose was to debug a compiler. It shows intermediate code, rather than assembly code, so it is not suitable for novices. Furthermore, it does not show execution path information.

Our work in path visualization is an extension of our previous work [5, 6]. In [5], we created a tool called SuperBlock that allows the user to see the blocks, loops and functions in a program in a GUI, but it gives no path information. The work in [6] created a GUI that gives information about paths, however this information is only given in text form. Thus, we decided essentially to combine the path generation technique used in [6] with SuperBlock’s GUI prototype model. The analysis engine behind SuperBlock can be easily ported to other architectures, so portability became a goal of our current work as well.

3. OVERVIEW

The authors wanted to create a tool that would allow a user to examine the structure of a computer program, especially an assembly program, down to the level of individual basic blocks and execution paths.

3.1. Where PathViz Fits In

Figure 1 shows the overall framework of how we can visually depict execution paths. PathViz takes two files as input: assembly code, and a canonical representation [5] of the control-flow. It is possible to begin with either an assembly program or a program written in a HLL. However, if the program is written in a HLL then it will be necessary to compile the program to emit both the assembly code and control-flow information. PathViz uses assembly code in order to give the user the opportunity to see the code corresponding to a portion of the program that interests them. More important, however, is the control-flow file, because this is how PathViz learns about the structure of the program, including its constituent parts. This file can be created by the compiler [1], or by the method described in [5]. The control-flow information is the essential ingredient for determining all of the execution paths.

Figure 1: Framework for visualizing execution paths

3.2. How PathViz Sees Your Program

When PathViz reads the control-flow and assembly files, it populates data structures with information about the program. The hierarchical structure of a program consists of functions, loops, blocks and paths. The entire program is a collection (implemented as an ArrayList) of functions. Each function contains a list of loops and a list of blocks. One of the loops inside every function is a special “Loop 0”, which simply represents all the code in the function. The authors found it useful to be able to treat an entire function just like a loop for the purposes of finding paths. One can think of Loop 0 has being an ordinary loop, but with just a single iteration.

In general, a loop consists of blocks and paths. And finally, a path consists of blocks. Technically, the relationships between loops and blocks, and between blocks and paths, are many-to-many rather than one-to-many. A block can indeed appear in more than one loop (for example a nested loop), and a block can reside in more than one path. We could continue this hierarchy down to the instruction level, since a block consists of one or more instructions, but this level of detail is not necessary.

3.3. Generating the Paths

Although PathViz can discover all the information about the functions, loops and blocks from the control-flow file, path information is not included. Thus, a separate algorithm within PathViz is necessary to compute all the paths in the program.

Once a program is represented ultimately as a set of blocks, then it can be represented as a directed graph, where the blocks are the vertices and the transitions between blocks are the directed edges. The basic algorithm for generating paths could be inspired by a classical depth first search or by Warshall’s algorithm [3]. However, a standard approach is too general for our purposes because in practice we do not use an adjacency matrix to represent the structure of the program. Such an adjacency matrix would be too sparse because of spatial locality. We are not interested in determining if an arbitrary block is connected to all other blocks. In addition, paths are relatively short because they are contained in a loop or function and do not span the entire program. As a result, we desired a straightforward approach that is both efficient and amenable to how we currently represent the program.

Our recursive path-finding algorithm is essentially a depth-first search, using the fact that each block maintains a list of successor blocks. We traverse blocks in a path until we encounter a block with no successors – which is the base case. Usually a block has one successor block. But the last block in a function will have no successors. And a block could have two successors if it contains a conditional branch instruction, or if it has a function call plus an ordinary successor. We assume that a block cannot have more than two successors [5].

3.4. Example

The primary purpose of PathViz is for a user to be able to understand the path and block structure of an assembly program. However, it can also be useful when a high-level language is the starting point. As an illustration, Figure 2 shows a small C program compiled into SPARC assembly. The code containing the initialization of array “a” is not shown.

[image: image1.jpg]* sumnegallpos.c
* Find the su of all the

* elements of en array, and

* the sum of all the

* positive and negative values
v

natnt)

int sumney, sunall, suwpos, i;

sumneq = sunall = suwpos

for (i = 0; i< 1000; i+ (
it (a[i] < 0]
sumney += ali]:
sunall += a[il:

if fali] > 0]
sumpos += alil;

List of paths through the loop.

Path 1: 29334355657
Path 2: 2333457
Path 3: 29435657
Path4: 2947

T plock

! black
117

! block

! black
Li8:

! black

! black

! black
115:

! block

1 (Lines 33-35)

mov %0,%05
mov %0504

mov %g0,%03

sethi *hi{_a),sgl
add xgl,3lo{_a), %0l
mov %alixoz

add %0l,4000,%g4
18 [302] 500

2 (Lines 36-36)

cap s00,%00

bye,a Lls

ada’ x0d,%00,%04

3 (Lines 37-37)

add %03,%00,%03
add %0d,%00,%0d

4 (Lines 38°33)

ble,a L1s
add’ %02,4,%2
5 (Lines 40°40)

add %05,%00,%05
6 (Lines 40°40)

aad %02,4,%02
7 (Lines 35-35)

o s0z,%04
Bl,a 117

14 [%02] 500
8 (Lines 35-35)
recl

nop

Figure 2: Example program in C and assembly, and list of paths

This example is provided so that the reader can gain an appreciation for the utility of having a tool that can automatically determine the execution paths. The paths in this example can be manually determined as follows. In the assembly code, there is a loop comprising blocks 2 through 7. In block 7 there is a transition back to block 2 to begin the next loop iteration. Block 2 contains a conditional branch (corresponding to the test a[i] < 0) that allows execution to skip block 3. So we can say that the successors of block 2 are blocks 3 and 4. Similarly, block 4 contains a conditional branch (corresponding to a[i] > 0) that allows control to skip blocks 5 and 6. Thus, the successors of block 4 are blocks 5 and 7. As a result, there are four paths, as listed in the lower left portion of Figure 2. Using PathViz eliminates the user having to perform these steps manually to find all the paths.

4. PATH VISUALIZER

When the user invokes PathViz, a JFrame window takes up the entire screen. The first step is to load an assembly program, and this is accomplished via the File menu. When the program is loaded, PathViz looks like Figure 3, which shows the same input program that was shown in Figure 2 discussed in the previous section.

[image: image2.jpg]UltraBlock - C:\my files\Java code\UltraBlock\UltraBlock\sumnegallpos. s

k4

.

Figure 3: The PathViz Interface

4.1. The Three Panels

The JFrame in PathViz consists of three panels:

· A menu panel along the left side shows the hierarchical structure of the input program. Here the user can select one part of the program, so that the relevant paths can be displayed.

· A path panel, taking up most of the screen, shows the user’s desired paths. This is the most important part of PathViz’s output.

· A block table panel at the bottom of the screen shows a cross-reference of all the blocks in the program, indicating in which loop and path they reside.

The menu panel is implemented as a JTree in Java. A JTree is well suited the purpose of representing the hierarchy of a program including its constituent functions, loops and paths. Functions and loops have an expand (‘+’) button allowing the user to see a list of loops contained in a function, or a list of paths associated with a loop.

When the user is ready to see paths, it is necessary to select the appropriate portion of the program. The user may select the entire program, a function, a loop or a single path. The most useful selection would be to select a loop – in this way, the path panel will show all the paths in that loop. For example, in Figure 3, the user has selected Loop 1 in the menu panel. This loop has four paths, as depicted in the path panel. The path panel can comfortably fit five paths on the screen at any one time. If there are more then five paths, then a horizontal scroll bar will allow the user to see the additional paths. If there are too many blocks in a path to show on the screen, then the path panel will have a vertical scroll bar as well.

If the user selects the entire program or a single function in the menu panel, then the path panel will simply show the block diagram with transitions, instead of showing all possible paths. (Later in this paper, Figure 4 shows a scenario where the entire program is selected.) In practice, the authors found that entire functions or programs have too many distinct paths to be worthwhile to see all at once. However, if the user is interested in such exhaustive information, PathViz can provide a printout of all the paths in the program. At the other end of the spectrum, the user may select a single path. In this case, only the selected path will appear in the path panel.

The block table panel is a cross-reference. For every block in the program, this table will state which loop and path this block is contained in. For example, Figure 3 shows that Block 5 is contained in Paths 1 and 3, but no other paths. The figure also shows that Block 1 is contained in Loop 0 but not Loop 1. “Loop 0” refers to the outer level of an entire function. The user may adjust width of the columns in block table panel. The user may click on any cell in the table, and PathViz will update the path panel as appropriate. If a path is selected, then that path will be displayed; if a loop is selected, then all the paths in that loop will be shown. This cross-reference feature is particularly useful when a loop has many paths, and the user is only interested in searching for which paths contain a certain statement.

All three panels feature horizontal and vertical scroll bars as needed to accommodate the information. In the path panel, the user may navigate in all four directions using arrow keys, page up and page down keys – which have the same effect as using the scroll bars. In the menu bar at the top of the frame, there is a View menu that also allows the user to move the path panel up, down, left, right, page up and page down. However, most users may find that the View menu is not as expedient as using the scroll bar or the arrow, page up and page down keys.

4.2 Colors for Transitions.

PathViz uses the following color scheme when drawing transition arrows between blocks.

· Sequential execution – A short blue arrow is drawn between two consecutive blocks.

· Conditional branch – A blue arrow appears on the left side of the path diagram. This is a transition to a block that is not the subsequent one. This situation can result from an if-then construct where we need to skip some code.

· Loop back edge – The transition from the last block in a loop back to the first is colored red. This feature makes it helpful for the user to quickly find where the loops are in the code.

· Function call – If a block contains a function call instruction, then PathViz will draw an arrow away from this block on the right side of the path diagram, in a color other than red or blue. PathViz will choose different colors for distinct function calls so that the user can distinguish them.

4.3. Design Issues

There were a couple of design decisions the authors made to avoid the clutter of potentially having many transition lines on the screen. First, conditional branch and loop back edge transitions are shown on the left side of the path diagram, and function call transitions are shown on the right. Second, we do not show returns from a function.

In the design of the path panel, the authors were conscious of the need to make the diagrams readable. One specific goal was to be sure to make the transition lines appear distinct and not overlap. In the example shown in Figure 4, we have the following transitions that need to be drawn on the left side of the diagram:

(a) a branch from block 9 to block 11

(b) a branch from block 12 to block 10

(c) a branch from block 4 to block 7

(d) a back edge from block 8 to block 4

(e) a back edge from block 11 to block 2

PathViz determines which ranges of values overlap. For example, there is an overlap between (a), (b) and (e). Transition (e) also overlaps with (c) and (d). PathViz uses this overlap information and the distance of the transition to determine how far away from the blocks to draw the vertical part of the transition line. Long transitions such as (e) appear farthest to the left so they are not in the way of shorter transitions.

[image: image3.jpg]UltraBlock - C:\my files\ava code\UltraBlock\UltraBlock\sort8. s =1olx]

Figure 4: Transition lines drawn to minimize crossing

5. DISCUSSION

The implementation of PathViz contains about 3400 lines of Java code – about two-thirds of which support the analysis and depiction of path information. The authors tested PathViz for robustness on a couple of large benchmark programs. We chose programs from Numerical Recipes in C [4]. The Data Encryption Standard program has five functions, 12 loops and 115 paths. And the LU decomposition program contains two functions, nine loops and 231 paths. When we ran PathViz on either program, all responses were instantaneous or took at most one second.

Of course, the types of programs that students would routinely use PathViz in a laboratory experience will not be so large. We have included a feature in PathViz that allows the user to print a text representation of all the loop and path information. This would be useful in case the interesting information cannot all fit on the screen at once.

We have just recently finished implementing PathViz, so it has not been classroom tested. Initially, PathViz is helpful for students getting over the hurdle of reading and understanding the structure of assembly code. Next, our hope is that a tool such as this can be helpful for debugging assembly code. Typical assembly debuggers such as adb are not user friendly: they rely on many arcane commands and have cryptic output.

Using PathViz on some of the larger programs, students may also learn an important lesson – functions and loops should be short, or else there can be many paths to contend with. One reason why we may want to enumerate paths in the first place is for testing code for correctness. When a function has hundreds of paths or dozens of blocks to keep track of, this may be a sign that more modularity is in order. For example, one loop in the LU decomposition program has 144 paths and 47 blocks. PathViz can handle this complexity, but the user should not have to.

6. FUTURE WORK

There are some minor cosmetic issues with PathViz. First, in our testing we have found that sometimes there is too much space between the paths in the path panel. We can squeeze in one or two more so that the user can rely a little less on the horizontal scroll bar. Second, we could label each path in the path panel with its path number and the block numbers contained in that path. This would be useful when there are many paths. For example, a path may be identified succinctly like this: “Path 2: Blocks 3,4,8,9,10”. In the unusual case when a path does not begin with the lowest numbered block, listing the blocks in the path would bring this fact to the user’s attention, to aid readability. Third, we could show the assembly code in the blocks themselves instead of having the user click to see code for one block. However, we decided not to overwhelm the user with too much information.

Regarding the menu panel, we could show the nesting of loops more explicitly. Currently, the loops within a function are listed sequentially, and we can indent. We would need to convey the nesting of loops to the JTree implementation.

A more ambitious plan we have is to show HLL source code if we know the correspondence between lines of HLL with lines of assembly – which is the case in some compilers like vpo [1]. For example, the assembly code in Figure 2 was produced by a compiler, and there are comments indicating the original line numbers that the C code originally came from that correspond to each block in the program.

7. CONCLUSION

This paper has described a new software tool called PathViz, which allows a user to examine all the execution paths of an assembly program. PathViz has been a collaborative project between an undergraduate student researcher and a faculty member in computer science. The goal of the project is to help students understand the dynamic behavior of the program – ability to see all execution paths, without having to run the program repeatedly on various input data. We have made it easy for a user to locate a path, either by looking through the hierarchical representation, or via a cross reference of the block list.

In our implementation of PathViz our starting point was a portable visual tool described in previous work [5]. PathViz represents an extension and significant upgrade of the earlier tool. In addition to the path information, the path panel features scroll bars, and all of the block transitions have been redrawn to reduce crossings, and feature arrowheads to make the direction of the transition clearer. We have also found PathViz to be computationally efficient, especially since the user never has to actually run the input source program.

Our hope is to take some of the sting out of learning assembly programming, and also remove some of the stigma of a hardware-oriented class. In this era of low computer science enrollments, it is quite beneficial to have a tool make the learning of computer science more visually attractive and enlightening.

REFERENCES

[1] M. Benitez and J. Davidson, "A Portable Global Optimizer and Linker," Symposium on Programming Language Design and Implementation, 1988, pp. 329-338.

[2] M. Boyd and D. Whalley, “Graphical Visualization of Compiler Optimizations”, Journal of Programming Languages, June 1995, pp. 69-94.

[3] R. Haggarty, Discrete Mathematics for Computing, Addison-Wesley, Harlow, England, 2002.

[4] W. Press, S. Teukolsky, W. Vetterline, B. Flannery, Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, New York: 1988.

[5] J. Estep and C. Healy, “A Flexible Tool for Visualizing Assembly Code,” Journal of Computing Sciences in Colleges, January 2005, pp. 55-67.

[6] L. Ko, N. Al-Yaqoubi, C. Healy, E. Ratliff, R. Arnold, D. Whalley, M. Harmon, “Timing Constraint Specification and Analysis,” Software Practice and Experience, January 1999, pp. 77-98.

HLL

source

compiler

asm code

control-flow info

PathViz

Interactive display

