
1

xml2vrml

A Library for Easy 3D Graphing

William Baucom

Department of Computer Science, Furman University

william.baucom@gmail.com

ABSTRACT

A dearth exists in the realm of easy-to-use

3D graphing solutions for the web. Many have

used XML to generate VRML in the past, but

these implementations have suffered from a very

narrow focus and aging web scripting

technologies. This paper details a modular

approach to XML graph definition that

incorporates customizable templates for power

users while abstracting the complexities of VRML

generation for less savvy users.

INTRODUCTION

As data sets grow larger and larger with

the advent of increasingly complex data

aggregation techniques, deriving useful

information from visual representations can be

challenging. Two-dimensional representations

can be useful for conveying limited amounts of

information, but adding a third dimension to data

display gives that representation a new level of

descriptive power. It has been shown that 3D

representations of graphs that provide depth cues

can enable an unskilled observer to see and

interpret paths between nodes in graphs

containing as many as 333 nodes, while observers

who spent more time with the experiment could

work with as many as 1000 nodes. The increased

capacity for conveyance of useful information is

increased by orders of magnitude when a third

dimension of data is incorporated1. In today’s

world of waning attention spans, a flashy, three-

dimensional graph is sure to provide a longer-

lasting, more useful impression than its two-

dimensional counterpart. Creating multi-

dimensional representations of data has been a

trend in computer science for ten years now, yet

applications produced over those years have

generally been very focused, narrow

implementations that are designed to take a

particular type of data, use a particular processing

language for formatting, and display that data

using a proprietary descriptive three-dimensional

language. These applications have failed to

embrace the trend in web-based solutions toward

open standards and extensible implementations.

The aim of this project is to provide a simple,

XML-based solution for describing sets of data in

three dimensions and to offer an implementation

of a parser in a common, open-sourced language

that can be distributed freely and used to create

visually stimulating graphical representations of

data.

BACKGROUND AND PREVIOUS WORK

The Virtual Reality Modeling Language

has its origins in the early days of the web3d

movement. Established as an ISO standard in

2

1997, VRML was created to facilitate the

description of three dimensional scenes that

would be rendered using plug-ins to common

browsers. It was the standard for three

dimensional web modeling until Extensible 3D

(X3D) superseded it, beginning in 20042. The

X3D movement has been slow to catch on due to

the entrenchment of VRML code and the

backwards-compatibility of X3D rendering

agents. Therefore, it was considered appropriate

to maximize usefulness and backwards

compatibility of this project by implementing a

VRML-based parser rather than an X3D parser.

VRML is a highly structured, deeply

nested, and unwieldy language. All objects within

a scene are given explicit descriptions that often

require multiple containers for placement,

coloration, texture application, and

interconnection. Only specific properties of

objects are exposed to the coder, and deviance

from the code structure often results in complete

program failure. Thus, implementation of VRML

code is an endeavor best left to either a skilled

worker or a machine – hence the usefulness of

this project.

XML is the Swiss army knife of the

Internet. Though some contend that the hype

surrounding XML technologies is excessive, the

sheer market permeation it exhibits is proof that

the disgruntled few are just that – very few.

Technically, XML is a data format specification.

It imposes a strict tree-based structure on data,

which facilitates parsing and using that data. In a

broader sense, XML represents the overwhelming

trend in computing to extract form from

function, representation from underlying data,

and fluff from meat. XML encoding offers no

presentational markup. In fact, it specifically

avoids anything other than giving meaning to

content. XML mirrors the SGML prototype—

enclosing tags within angle brackets—but in

contrast to fluid languages like HTML, imposes a

strict standard of case-sensitivity, matched tags,

and well formed attributes. However, beyond

these code form issues, XML offers no direction.

Herein lies the elegance of the language: the user

defines his own set of tags that best describe his

own data. Yet, because the structure of those tags

is very rigid, an abundance of libraries, programs,

and interfaces have been created to utilize and

manipulate that data. For this project, XML was

the natural choice for an easy to use, descriptive

language because of its widespread compatibility.

XML is also an excellent choice because, unlike

other SGML-based languages, it does not require

a Document Type Definition. Rather, code can

be validated by error checking in the parser3.

The use of VRML with XML is not a new

idea. One early blending of these technologies

was described by Arun and Ganguly in their paper

on Chemistry’s applications of the VRML-XML

nexus. Their subject was the visual display of

molecular data, which was already encoded in

XML-like form. Chemists were using the

Chemical Markup Language while XML was still

in its infancy, and transitioning this data to a

VRML representation was an excellent solution

for visualizing the complex nature of chemical

3

interactions4. XML played the role of value-adder

in this case, taking the basic CML data and

extending it to include information for

representing movement and interaction between

atoms. This early implementation reveals the

limitation characteristic of many others to follow:

the language of implementation is no longer the

preferred coding medium for the web. Using the

XML::Parser interface to the C expat library, the

Perl script implementation of this application is

no longer common or easily maintained. Thus,

this implementation offers little value to current

and new users.

A second intriguing implementation of an

XML to VRML tool is Hong Kong Polytechnic

University’s Dynamic Structuring of Web Information

for Access Visualization. Researchers attacked the

problem of the endless link hierarchy on the web

to find relevant data from sites. Referencing the

issue of limited bandwidth and screen space for

mobile browsers, these researchers endeavored to

encapsulate the relationships between pages of a

site in XML documents. These so-called

Document Cluster Graphs are then fed into

different visualization formats based on the

request and capabilities of the user’s browser.

Often, this means that the relationships are

translated into three-dimensional models of the

cluster using VRML and a mobile-browser

compatible plug-in. These VRML views consist

of collections of spheres and cylinders that

represent the nodes (web pages) and links

between them, respectively. Incoming and

outgoing links are color-coded, and can be

weighted according to click counts5. Data parsing

is handled in this implementation using the Oracle

XML Parser for C++ and C++ libraries.

Interestingly, the conversion to VRML is

generally done on the end-user’s device. Here

again, in addition to the potential issues of

offloading processing to the user, this project

suffers the limitation of a proprietary, Microsoft-

owned language.

PROJECT MOTIVATIONS

There is a dearth of 3D libraries in

currently popular and relevant web scripting

languages, and it is hoped that this library can be

made available under an open-source license and

improved and extended by others. This project

intends to make the third dimension available to

the masses by providing an easy way to structure

data while encapsulating the verbose and difficult

VRML coding.

XML2VRML IMPLEMENTATION

As previously discussed, the xml2vrml

library is implemented in PHP. As a language,

PHP bridges the gap between the total lack of

structure embodied by most scripting languages

and the object-oriented, strongly-typed structure

of Java. The result is a hybrid that allows the

declaration and assignment of completely type-

less variables for easy learning and use by new

coders, yet still provides for type hinting and

class-based scope definitions for use by more

serious developers.

This was the author’s first foray into the

structured side of PHP and it was quite a success

in that regard. PHP is kind enough to follow

4

many of Java’s trailblazing conventions, such as

implementing a garbage collector instead of

requiring manual disposal of objects. Also, access

controls for classes are specified in the manner of

Java. One frustrating difference is the deviation

from the dot-notation of variable and method

access. Because the ‘.’ is already used in PHP as

the concatenation operator, the character

sequence ‘->’ was instead chosen to access class

properties. In the same vein, PHP strangely

requires that the ‘$this’ keyword be used when

accessing properties of the class from within the

class’s methods. While this certainly makes scope

clearer, it is a rather annoying change to make for

someone who was trained in Java, where the ‘this’

keyword is often optional. Finally, the declaration

of classes is not required to follow file-naming

conventions. While it is convenient to declare an

exception class in the same document that uses it,

even the possibility of holding all your classes in

one text file is a frightening prospect for any Java

coder worth his salt.

The most important aspect of the PHP

class system to the success of this endeavor is the

SimpleXML parser library. SimpleXML is quite

aptly named, and allows an XML document to be

loaded from a string or file with a single

command. The resulting SimpleXML object is a

composite of many more SimpleXML objects

which hold all of the original object’s attributes

and children. This hierarchy continues through

the XML document, encapsulating all of the data

into iterable objects. For example, the following

code snippet accesses the child elements of the

<points> element which is a child of the

<options> element, which is a child of the

<graph>, or root element.
if(count(

$this->xml->options->points->children()) > 0)
 foreach ($this->xml->options->points-

 >children() as $optn)
{
 $psObj->setAttribute($optn-
 >getName(), $optn);
}

Though it seems verbose, this is actually a very

intuitive way of thinking about the XML data

structure that few other libraries utilize. The

children() function returns an array that can be

iterated over, pulling out each element as $optn in

turn and using that reference to set an attribute of

another object.

The class structure of the xml2vrml library

is an abstraction of a graph’s properties, and it

mirrors the XML declaration’s structure. An Axis

class encapsulates the minimum and maximum

value of each axis, the tick mark attributes, the

color, and the axis’s label. The axes are

accumulated in an Axes class which merely holds

an array of the Axis class. For declaring the data

to be graphed, Point and PointSet classes were

used. The Point class offers an encapsulation of

the x, y, and z coordinates of a particular datum,

and the PointSet class aggregates Points and

defines the color, shape, size, plot type, and name

of a particular set of data. Breaking down groups

of data into PointSets provides the ability to

represent multiple themes on the same visual,

providing a facility for comparison of trends. The

figure below demonstrates two PointSets of

random data, showing two different point shapes

5

and colors, with both using line graphs rather

than scatter plots.

Each class shares the responsibility of producing

its verbose VRML code with a template loaded

using the CodeTemplate class. The

CodeTemplate class loads a static template file

into memory, then uses PHP’s string

manipulation functionalities to replace flags in the

template, defined as {_VARIABLE_NAME_}, with the

appropriate code, whether that be the point

location, the axis color, or the array of numbers

that define the line graph. Thanks to these

templates, code that was as short as
<x>
 <color>red</color>
 <min>0</min>
 <max>10</max>
 <label>Time</label>
</x>

in XML now expands to:
Shape { # start x axis definition
 geometry IndexedLineSet {
 coord Coordinate {
 point [
 0 0 0, 10 0 0,
 3 -0.4 0, 3 0.4 0, 3 0 -0.4, 3 0 0.4,
 6 -0.4 0, 6 0.4 0, 6 0 -0.4, 6 0 0.4,
 9 -0.4 0, 9 0.4 0, 9 0 -0.4, 9 0 0.4
]
 }
 coordIndex [
 0, 1, -1,
 2, 3, -1,
 4, 5, -1,

 6, 7, -1,
 8, 9, -1,
 10, 11, -1,
 12, 13, -1
]
 color Color { color 1 0 0 }
 colorIndex [0 0 0 0 0 0 0]
 colorPerVertex FALSE
 }
 } # end Shape
Transform { # label section
 translation 10.2 0 0
 children Billboard {
 axisOfRotation 0 0 0
 children Shape {
 appearance Appearance {
 material Material {}
 }
 geometry Text {
 string "Time"
 fontStyle FontStyle {
 size 0.8
 }
 }
 }
 }
 }

in the full VRML. The Axis class accepts simply a

color, minimum, maximum, and label value from

the XML document. With this, it uses the tick

mark interval and width to plot the array of points

starting on line 4 of the code above. It then links

these points to make lines using the “coordIndex”

block just below. The color is specified and

mapped to each of those line segments created by

the coordIndex, and finally, the label is dropped

into the Text feature of the “billboard transform”.

This template and encapsulation scheme

accomplish the principle goal of this project—to

provide an easy to use, yet extensible graphing

solution. Only a basic knowledge of XML is

required to use this library, yet a skilled VRML

coder can manipulate the template files to unlock

additional functionality.

APPLICATION OF THE PRODUCT

Without an application to show off its

features, a library like this one is little more than a

nice idea. In this case, we looked to the Timing

6

Analyzer project run by Dr. Chris Healy. Having

seen the development of a web interface for this

program the previous summer, the author found

this programs output data exceptionally hard to

understand and assimilate. The original data

output from this project was a table with many

columns of data. To make this more accessible to

those untrained in reading this data, the author

undertook the task of converting the tabular data

to an XML format that could be read into a three

dimensional graph. This allows analysis of

multiple variables at the same time while reducing

the sheer volume of data presented.

The first challenge in porting this web

interface was to generate data that varied across

multiple parameters. Because of the structure of

the underlying program and of the web interface,

it was impractical to get all of the data in a single

page load. Therefore, a refreshing system was

implemented, using query string variables and the

<meta http-equiv=’’refresh”> header. The page

refreshes once per second and gets the next

iteration of data. When this data is fully

generated, the user has the option to download

the XML file for later viewing, or to immediately

send that XML to the xml2vrml parser.

A second important challenge in creating

a useful graph is the need to appropriately size the

axes. The raw data produced by the timing

analyzer has a enormous range of values. One

axis might vary from .20 to .55, while another may

vary from 2 to 256. Since the VRML code

interprets all points literally, this meant that one

axis stretched past the edges of the screen while

the other was completely invisible. With the axes

that far out of proportion, the data points become

meaningless. Therefore an algorithm had to be

devised to force the axes to lie within a reasonable

range of each other. The following is code for the

algorithm the author developed:
$try = 0; // initialize temporary maximum
$prevdiff = SCALE_VARIANCE; //variance threshold

for($i = 2; ; $i++) {
 if ($trueMax < $target_max)
 $try = $trueMax * $i;
 else
 $try = $trueMax / $i;
 $tempdiff = abs($try - $ target_max);
 if ($tempdiff < $prevdiff && $tempdiff <
 SCALE_VARIANCE) {
 if ($trueMax < $ymax)
 return $i;
 else
 return 1 / $i;
 }
 elseif ($tempdiff < $prevdiff)
 $prevdiff = $tempdiff;
 else // overshot ideal number
 return ($trueMax < $ymax) ? $i-- : 1 / $i--;
}

Starting with i=2, the algorithm scales up (by i) or

down (by 1/i) towards the target until the

absolute value of the difference between the two

is within a predefined range. This has worked

quite successfully and is important to the future

work.

FUTURE WORK

Although the project was a success, the

interface layer between the application and library

layers contains more functionality than it should.

Currently, the maximum and minimum for the

axes values are determined using database queries

from the timing analyzer’s data cache. Also, the

scaling algorithm is currently incorporated into

this transitional layer. It would be much more in

line with the projects goal of an easy-to-use

interface if the scaling algorithm was incorporated

directly into the XML parser. In this way, the

7

user would just feed the raw data into the XML

input, rather than having to pre-scale it as is

currently the case. Also, the determining of the

minimum and maximum values should be left to

the PointSet class, again so that the burden of

providing this data is only on the user if they

choose to set them specifically. A future revision

of this parser should make the axis min & max

parameters optional and automatically scale the

input data and axis values.

Additionally, the data pulled from the

timing analyzer is apparently not the most

important and relevant data. Based on the

author’s conversations with the implementer of

the original web interface, the execution time was

assumed to be the data of interest. This is not the

case, and future implementations should instead

look at the simulation data, as this provides the

most relevant and interesting information.

CONCLUSIONS

This project set out to create an easy

interface for unleashing the power of three-

dimensional graphing to capture peoples’ interest.

It has successfully accomplished that goal. A

simple, flexible XML schema combined with plug

and play library access (its as easy as this:)
$gr = new XMLGraph($xml);

$gr->publish();

make this a worthwhile tool for data visualization.

Robust error checking and exception handling

make using this tool easy for newcomers to PHP

and to web scripting in general, and there is

exciting potential for future development.

1 C. Ware and P. Mitchell, 2005. Reevaluating stereo and

motion cues for visualizing graphs in three
dimensions. In Proc of the 2nd Symposium on
Applied Perception in Graphics and Visualization (A
Coroña, Spain, August 26 - 28, 2005). APGV '05,
vol. 95. ACM, New York, NY, 51-58.

2 The web3d Consortium. X3D Standards and FAQs.,
http://www.web3d.org/x3d/specifications/

3 T. Usdin and T. Graham, 1998. XML: not a silver bullet,
but a great pipe wrench. StandardView 6, 3 (Sep.
1998), 125-132.

4 Peter Murray-Rust, Henry Rzepa, & Christopher Leach.
Chemical Markup Language (CML),
http://www.ch.ic.ac.uk/cml/

5 J. Y. Mak, H. Va Leong, and A. T. Chan, 2002.
Dynamic structuring of web information for access
visualization. In Proc of the 2002 ACM Symposium
on Applied Computing (Madrid, Spain, March 11 -
14, 2002). SAC '02. ACM, New York, NY, 778-784.

Total word count: 3006

