
A Mental Game as a
Source of CS Case Studies

Chris Healy

Department of Computer Science

Furman University

Starting with a game

• Apterous: implemented by students at Cambridge
University

– Based on Countdown in the UK and Des Chiffres et des
Lettres in France

– Letters game

e.g. Find a word from GLAEITDTA

– Numbers game

e.g. 2 3 7 8 9 10 403

• Analysis questions about the games lend themselves
to many possible projects in computer science
classes.

Opportunities

Courses where I have used Apterous material

• Introduction to Python

• Parallel programming

• Discrete structures

• Data structures and algorithms

• Independent research project

Letters game assignments

• Scan the online “dictionary” and see how many
words have n letters. (c consonants and v vowels)

• Simulate game to find optimal solutions for each. Do
this many times to detect patterns…

– Which words appear most often as the longest possible
solution (i.e. words guaranteeing points) ?

– How long is the longest possible word: how often does it
have k letters? Average max score per round.

– Finding words that are most often the unique longest
word.

• Random sampling as opposed to brute force

Quantitative analysis

Discrete math class…

• A selection of letters must have 3, 4, or 5 vowels.

• Can calculate the number of possible number of
distinct letter selections for a game.

• Probability of a letter appearing mirrors actual
frequency analysis
– Analysis of words in a dictionary (q is least common)

– Analysis of a corpus of text (z is least common)

• Which of the 13+ billion letter selections are most
likely to appear?

Numbers game

• Mapping between

– Game instances (selection of numbers)

– Mathematical expressions

• In discrete math, we can calculate the total number
of both sets

– Catalan number: How many ways are there to draw a
binary tree having (6) nodes?

– Generating functions: How many ways can we select 6
numbers from a set? And similar questions

– Total number of expressions > 424 billion.

Extended project

• Reducing the number of expressions, due to the
inherent redundancy.

• Incremental development
– Removing permutations that are not distinguishable (from

410 billion to 227 billion)

– Discard expressions that have intermediate result of 0, or
whose final value is not 101..999 (now 7.5 billion)

– Exploit commutativity of + and * (now 685 million)

– Enforce left associativity of + and * (now 559 million)

– For 2 operators at same precedence, make first number
greater than second (now 341 million)

– Look for “wasted number” such as “+ 2 – 2” or “4 * 4 / 2”
(now 329 million)

Parsing game history

• Apterous.org contains results of games played on
television (>50,000 of letters, 15,000 of numbers)

• Write a Web robot to download the history

• Parse the HTML (regular expressions)

• Analyze results of letters games
– Common words

– How often players found longest length word

– How many vowels contestants desired

– Does the letter frequency match what we’d theoretically expect?

– Player performance over time

continued

Individual student project

• Analysis of numbers game results

• How difficult is a mathematical expression?

• Difficulty level of game

– How many contestants solved it?

– Did the TV mathematician solve it?

– Does it even have a solution? If not, how close?

Conclusion

• Programming projects based on Apterous games can
illustrate or reinforce several CS motifs such as

– Binary trees

– Postfix notation and evaluation with stack

– File I/O and regular expression parsing

– Cryptanalysis

• Look at other “game shows”

– Price is Right’s bidding game

– What words are used as clues on Password?

