
Retargetable Infeasible Path
Detection for WCET Analysis

Zach Hall, Kory Kraft, Thomas Mincher,
Joey Iannetta, Chris Healy

Department of Computer Science

Furman University

Problem / Goals

• Accurate, efficient WCET analysis
– Input program usually features multiple paths
– Longest paths might never be taken
– Need to detect infeasible paths

• Perform analysis on assembly code
– Instead of modifying compiler
– Easier to retarget timing analysis tool

• Information required for WCET analysis
– Control-flow, hierarchical structure
– Loop iterations

Outline of Approach

• A new tool to assist WCET analysis: RALPHO

• Read assembly definition file
• Read assembly source

– Identify functions, branch destinations, basic blocks
– Create directed graph of basic blocks
– Find loops, calculate # iterations

• Branch constraint analysis
• Compute paths and function instances
• Control-flow information passed to timing tool

Branch analysis

• For each pair of branches,
– Does one influence the other?
– 2 branches  4 paths. Maybe some are infeasible.
– See if they compare same register
– Analyze the relational operator and constants

• For each basic block,
– Does it update a register used in a comparison

elsewhere?
– If so, then branch behavior along a path may be

determined

Ongoing Work

• Testing with Mälardalen benchmarks
• Consider comparisons between two registers
• Determine iteration constraints on paths
• Interprocedural analysis

– Detecting more nested loops
• Combine with work presented at RTAS 2014:

stochastic execution time

	Retargetable Infeasible Path Detection for WCET Analysis
	Problem / Goals
	Outline of Approach
	Branch analysis
	Ongoing Work

