
Background Sample Results

Special Thanks

Approach
Branch Analysis

easily modifiable

Ongoing Work

An accurate estimate of the Worst Case
Execution Time (WCET) of a task is essential in
hard real-time system scheduling. Often, a
function or loop has multiple execution paths,
due to conditional branch instructions. Based on
the nature of the comparisons, some paths may
be infeasible. Eliminating infeasible paths from
consideration can give a tighter bound on the
WCET.

We created a tool, a Retargetable Assembly
Level Hierarchical Organizer (RALPHO). Its
goal is to glean control-flow facts to pass to our
timing analyzer. These facts are used to create
function instances and paths. RALPHO is easy
to retarget and replaces the need for us to rely
on a compiler to provide control-flow information.

RALPHO Preliminaries
First, read assembly definition file to understand
the syntax of the target instruction set.
Next, read the assembly source.
• Find functions and labels (branch targets)
• Partition instructions into basic blocks
• Find predecessors, successors, dominators of

blocks.
• Find loops, calculate number of iterations, and

how the loops nest. Identify which blocks
comprise each loop.

Correlation:
• We consider branches in pairs. If two branches in the

same function compare the same register, we perform
correlation analysis. For each pair, there are 4
possibilities: both taken, both fall through, first only taken,
second only taken. We determine which possibilities
could occur.

• There are 6*6*3 = 108 possible cases of branch
correlation, due to 6 relational operators for each
comparison, and the 3 ways that the constants compare to
each other.

• The infeasible paths can be selected by scanning through
the appropriate possibilities. For example, if the first
branch is a >, the second branch is a <, and the two
numbers being compared to the register are equal then
(True, False) and (False, True) are the only feasible paths.

Prediction:
• If a block updates a register that is later used in a branch

instruction, we determine if the effect makes the branch
taken or not.

 Retargetable Infeasible Path Detection for WCET Analysis

\

Zach Hall, Kory Kraft, Thomas Mincher, Joey Iannetta, Chris Healy
 Department of Computer Science, Furman University, Greenville, SC

We plan to test our approach with established
WCET benchmarks. Further refinements to our
approach include the following: dealing with
branches that compare more than one register,
and determining on which loop iterations a branch
should be taken. We also plan to incorporate
RALPHO’s infeasible path detection into our
related work on stochastic analysis to improve its
accuracy.

Above are the results of a sample test whose
accuracy improved with infeasible path detection.
Alongside each test is the C code and assembly
code used to test the timing analyzer.

0

5

10

15

20

25

30

35

Real Time Estimated Time With Path
Feasibility Detection

Estimated Time Without
Path Feasibility Detection

Ti
m

e

Test 3

Path # Blocks in Path Feasibility
1 1,2,3,4,5 Not Feasible
2 1,2,3,5 Feasible
3 1,3,4,5 Feasible
4 1,3,5 Not Feasible

The work was supported in part by grants from the
Furman Advantage and Francis M. Hipp Research
Fellowship and the South Carolina Independent
Colleges and Universities Research Program.

Branch Constraints

For each block, RALPHO computes the presence of
branch prediction or branch correlation constraints.
• Block A makes block B unknown.
• Block A makes block B fall through.
• Block A makes block B branch.
• If A falls through, then B is unknown.
• If A branches, then B is unknown.
• If A falls through, then B will branch.
• If A branches, then B will branch.
• If A falls through, then B will fall through.
• If A branches, then B will fall through.

	Slide Number 1

