
   

Generalizing Parametric Timing Analysis

ABSTRACT 
In the design of real-time and embedded systems, it is important 

to establish a bound on the worst-case execution time (WCET) of 

programs to assure via schedulability analysis that deadlines are 

not missed.  Static WCET analysis is performed by a timing 

analysis tool.  This paper describes novel improvements to such a 

tool, allowing parametric timing analysis to be performed.  

Parametric timing analyzers receive an upper bound on the 

number of loop iterations in terms of an expression which is used 

to create a parametric formula.  This parametric formula is later 

evaluated to determine the WCET based on input values only 

known at runtime.  Effecting a transformation from a numeric to a 

parametric timing analyzer requires two innovations: 1) a 

summation solver capable of summing non-constant expressions 

and 2) a polynomial data structure which can replace integers as 

the basis for all calculations.  Both additions permit other methods 

of analysis (e.g. caching, pipeline, constraint) to occur 

simultaneously.  Finally, our tool features a user-friendly 

graphical interface to easily obtain results for any desired 

program.  Combining these techniques allows our tool to statically 

bound the WCET for a larger class of benchmarks, which more 

closely match contemporary real-time and embedded application 

codes and allows users an easy method for procuring results. 

Categories and Subject Descriptors 
C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED 

SYSTEMS]: REAL-TIME AND EMBEDDED SYSTEMS 

General Terms 
Verification, Reliability 

Keywords 
Worst-case execution time (WCET) analysis, parametric timing 

analysis 

1. INTRODUCTION 
 Embedded systems, especially those in safety-critical or hard 

real-time environments, typically require that timing constraints 

be met.  To guarantee these systems will meet deadlines, the 

worst-case execution time (WCET) of each program must be 

known.  Knowledge of the WCET can also be used to 

dynamically scale voltage when a scheduler detects future slack 

time [1, 7, 11, 12].  This facilitates power savings, an especially 

important aspect in embedded systems.  The process of 

determining the WCET of a program is known as timing analysis. 

 Two different approaches to find the upper bound exist: 

dynamic and static [3, 8, 17].  Dynamic timing analysis attempts 

to experimentally determine worst-case input data.  This approach 

is error-prone and usually cannot guarantee that the absolute 

maximum has been found.  In contrast, static timing analyzers 

examine all paths within a program and individually time each of 

them by taking into account the architectural components of the 

specified platform [11, 16].  If the number of paths exceeds a 

predefined maximum, control flow can be partitioned into 

synthetic sections that are each handled individually by the timing 

analyzer [9].  Once the individual paths have been timed, they are 

coalesced into loops, functions, and finally an entire program [11, 

16].  The composition of paths abstracts from concrete program 

input and assures that a safe upper bound of the WCET is 

analytically derived.  This bound is safe in that it never 

underestimates the actual WCET. 

 Static timing analysis has traditionally required loops to 

contain a constant number of iterations so analyzers may produce 

constant worst case execution bounds.  Such constraints on input 

programs make this form of timing analysis numerical: the 

number of loop iterations is constant as is the final result from the 

timing analyzer.  On the other hand, parametric timing analysis 

allows the number of loop iterations to be unknown at compilation 

as long as this value may be written as an expression.  Such 

flexibility expands the class of programs which may be analyzed.  

Instead of providing a constant upper bound for a loop, a symbolic 

formula is created using the expression representing the number 

of loop iterations.  The formula may be evaluated later to obtain 

the execution time for any given input [11, 16].  One example of a 

useful application for parametric timing analysis is image 

processing applications where the image dimensions are not 

known a priori [18]. 

 We obtained a version of a timing analyzer [5, 9, 11, 16] and 

enhanced it to support generalized parametric analysis.  The 

conversion required a three-fold process.  First, a summation 

solver capable of summing non-constant numbers of iterations 

was written.  Next, an advanced polynomial data structure was 

developed to express parametric formulas.  Naturally, the 

polynomial data structure should not significantly slow numerical 

calculations.  Finally, the polynomial class was integrated into the 

timing analyzer to replace integers in calculations.  Constraint 

analysis – determining which paths in a loop can execute on 

certain iterations – can still take place with polynomial 

functionality. 

 Although these goals appear simple at first, parametric 

benchmarks present special problems to timing analyzers.  

Numerical timing analyzers receive a numerical upper bound on 

the maximum number of loop iterations that is either 

automatically determined by analyzing the program or is input by 

the user.  Parametric analyzers receive the maximum number of 

loop iterations as an expression whose value is unknown at 

compilation (e.g. for i = 0 .. n-1 contains n iterations). 

Because the expression must be evaluated at runtime, the loop 

body may not execute even once (e.g. the value of n could be -1).  

Such uncertainty means every parametric benchmark implicitly 

contains control flow even when the numerical version does not. 

 Figure 1 shows the blocks in a numerical and parametric 

version of the same benchmark.  Note that the parameterized loop 

(body) may never execute (since there is a conditional check to 

ensure that the initial value is less than the limit).  In the presence 

of an unknown number of iterations, parametric timing analyzers 

must present a solution encompassing all possibilities.  These 

include the case where the loop body does not execute.  This 

inconclusiveness complicates the process of timing analysis. 

 



   

// numerical 

// MAX is constant 
for(i = 0; < MAX; ++i) 

  a[i] = i; 

// parametric 

// itr is function parameter 
for(i = 0; < itr; ++i) 

  a[i] = i; 

 

 
 

Figure 1:  Blocks in a numerical and parametric benchmark. 

 Because the creation of a “true” parametric timing analyzer 

involves both a summation solver capable of symbolically 

evaluating loop iterations and an improved polynomial data 

structure, it was logical to split work into two separate phases.  

The first phase developed the symbolic summation solver.  The 

second segment of work focused on implementing and integrating 

the polynomial data structure. 

 Previous work (described in Section 2) in timing analysis has 

been centered on numerical analysis where the maximum number 

of iterations for loops must be known at compilation.  When loops 

are non-rectangular in nature, averaging techniques are used to 

guarantee tight WCET bounds (Section 2.2).  Section 4 discusses 

the tool Emtadel which was written to handle the calculation of 

the number of iterations of nested triangular loops.  This tool 

replaces Ctadel, a general-purpose algebraic simplifier [15].  

Section 5 provides the details of the polynomial classes which 

were written to achieve increased performance during timing 

analysis calculations.  We highlight the algorithms used in 

parametric timing analysis in Section 6 before discussing our 

experimental platform and results in Section 7. 

 In this paper, we describe novel techniques for bounding the 

WCET of parameterized programs.  First, we describe a procedure 

for calculating the number of iterations of nested loops in terms of 

loop invariant parameters.  Secondly, an existing timing tool was 

enhanced so parametric formulas rather than numeric quantities 

could be used in all calculations.  Thirdly, a graphical user 

interface allows immediate feedback on the results of a desired 

program.  This interface allows a large number of testing 

parameters – including hardware platform, cache configuration, 

and the number of loop iterations – to be modified.  The final 

result is a static timing analyzer capable of determining WCET 

bounds for programs which are likely to be encountered in today’s 

real-time embedded systems. 

2. PREVIOUS WORK 

2.1 Timing Analysis 
 The numerical timing analyzer that we obtained is illustrated 

in Figure 2.  A modified C compiler (VPO) emits control-flow 

and branch constraint information during compilation [2].  This 

information is used by a static cache simulator so the caching 

categorization (e.g. always miss, always hit, first miss, first hit) of 

each instruction may be determined.  The timing analyzer 

combines the control-flow, constraint, caching, and machine 

dependent (e.g. pipeline) information to reach an accurate upper 

bound of the WCET. 

 As the other studies of static timing analysis stipulate [5, 11, 

16], a number of other conditions must be met.  First, recursive 

programs are not allowed.  Secondly, there can be no indirect 

calls.  Finally, loops must be structured which for this purpose 

means they have a single entry point. 

2.2 Bounding Loop Iterations 
 A stand-alone software package was used to calculate 

integral solutions for nested triangular loops.  Triangular means 

that the number of iterations of the inner loop depends on the 
induction variable of the outer loop.  Consider the code fragment 

for (x = 0; x < 3; ++x) 

  for (y = 0; y <= x; ++y) 

    statement; 

. 

. . 

. . . 

The dots to the right indicate the number of iterations of the inner 

loop for each value of x.  Because the number of iterations is non-

constant, the minimum, maximum, and average number of 

iterations must be calculated.  The software package could handle 

any level of loop nesting and could determine if the number of 

loop iterations is zero even when it is not immediately apparent by 

examining the original loops. 

 For the example presented above, the equivalent summation 

would be 
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which equals 6.  The minimum number of iterations of the inner 

loop is 1, the maximum is 3, and the average is 2.  The average 

number of iterations of the inner loop is calculated by dividing the 

sum (6) by the total number of iterations of the outer loop (3).  

The concept of representing the number of loop iterations as a 

summation was motivated by the work of Sakellariou [13]. 

 Averaging the number of iterations considers the possibility 

of the inner loop being zero-trip or partially zero-trip.  A zero-trip 

loop derives its name from the fact that a summation whose lower 

bound exceeds its upper bound evaluates to zero.  Hence, a zero-

trip loop does not execute the loop body.  A partially zero-trip 

loop fails to execute the loop body on some iterations.  If the 

condition of the inner loop in the example presented above was y 

< x (instead of y ≤ x), the inner loop would be partially zero-trip.  

On the first iteration of the outer loop, x would be zero and the 

inner loop would not execute.  On the second and later iterations, 

the inner loop would execute.  Hence, the inner loop would be 

partially zero-trip in the modified example.  Using the average 

number of iterations for triangular loops achieves tight WCET 

bounds. 



   

 

Figure 2: Static Timing Analysis Process

 Using rational numbers in the calculations allows even more 

accuracy when averaging the number of iterations of triangular 

loop nests.  In the previous example, changing the conditional 

expression of the outer loop to x ≤ 3 (instead of x < 3) would 

mean that the total number of iterations would be 10.  Dividing by 

the total number of iterations of just the outer loop (4) provides 

the average number of iterations (2 ½).  Representing the number 

of iterations as an integral quantity would mean that the inner 

loop’s average number of iterations would be 3.  Hence, a rational 

representation further tightens WCET bounds. 

 In the case of parametric loops, a naïve approach would 

derive the total time of the loop through a formula resembling  

total_time =  

iteration time * iterations 

where the number of iterations is a variable.  Nested parametric 

loops requiring the number of iterations to be averaged would 

create a problem.  The inner loop’s final cycle count would be a 

function of the outer loop's induction variable instead of the 

variable passed into the function.  For example, the code fragment 

(where z is a function parameter) 

for (x = 0; x < z; ++x)   // loop 1 

  for (y = 0; y < x; ++y) // loop 2 

    sum += (double) (x * x – y * y); 

would produce the following output:1 

   TOTAL TIME 

LOOP 2  51x + 4 

The inner loop in this case should report its time in terms of the 

function parameter z.  Only a summation solver capable of 

calculating the number of iterations symbolically could correct 

this naïve approach.  Then, the formula for the average number of 

iterations could be used which would allow the same algorithm to 

solve both integral and polynomial cases. 

3. RELATED WORK 
 Lisper presented a procedure to bound the WCET for 

parametric programs [10].  His approach is based on abstract 

interpretation of the program’s execution and integer linear 

programming to compute the WCET bound.  In general, both of 

these aspects are computationally intensive.  The approach has not 

been fully implemented so its accuracy has not been determined. 

 Colin and Bernat proposed a scope-tree representation of a 

program in which control-flow constraints are expressed as 

                                                 
1 The coefficient of x, 51, is the number of cycles required to 

complete one iteration of loop 2.  The constant term, 4, is the 

pipeline fill time encountered on the first iteration. 

annotations to the tree [4].  Execution frequencies of blocks are 

stored, and these can be parametric as well as numeric values.  

Control-flow constraints can also be specified.  The tree can then 

be traversed to evaluate the WCET.  Unfortunately, experimental 

results of the implementation are not provided. 

 Sandberg et al. have used program slicing to derive control-

flow information [14].  Program slicing determines subsets of a 

program which can affect other sections of the program.  This 

allows segments which do not affect program flow to be 

disregarded during control-flow analysis.  Consequently, the 

space and time complexity required during control-flow analysis 

is greatly reduced.  Being able to handling control-flow analysis 

automatically greatly diminishes the need for writing control-flow 

information in manual annotations which is painstaking and error-

prone work. 

4. COMPUTING ITERATIONS 
 The VPO C compiler (see Figure 2) creates a control-flow 

information file during compilation [2].  The timing analyzer 

obtains loop specific information from this control-flow file.  This 

data includes the iterating (induction) variable and iteration 

information consisting of the minimum and maximum number of 

iterations (provided these are numeric quantities) or the initial, 

limit, and increment value of the induction variable [6].  If a 

parametric loop is nested within another parametric loop, the outer 

loop's iteration information is also reported.  This allows a group 

of summations representing the loop structure to be generated.  

The program Emtadel handles the evaluation of the loop 

summations. 

 The popular numerical and symbolic computation system 

Mathematica allows C programmers to interact with its extensive 

library of functions.  Although the features of this software exceed 

those of a summation solver written in C, two drawbacks exist.  

First, the portability of the timing analyzer would be 

compromised.  The timing analyzer could only run on systems 

which had Mathematica installed, and changes to the Mathematica 

installation would necessitate updates to the environment 

variables used to access Mathematica functions.  Additionally, 

computer algebra systems do not provide guards on the solutions 

which are returned.  In the example presented above, z must be 

greater than zero.  If such conditions are not met, the summation 

should be zero but in certain cases, substituting a value for z 

directly into the formula returned could result in a negative 

answer. 

 To illustrate calculating the average number of iterations for 

triangular loop nests, we first consider the control-flow 

information generated by the compiler.  Loop information consists 

of the induction register, beginning value, limiting register (or 

value), relational operator, and information about the parent loop 



   

[6].  Using a summation grammar, the timing analyzer can create 

the summation command sum(1, loop2 = 0 .. loop1 – 

1 by loop1 = 0 .. z – 1) for the nested loops presented 

above.  Note that the loops appear in reverse order when 

compared to a handwritten summation.  A symbolic summation 

solver calculates the total number of iterations nearly identically 

to the way the summation is solved by hand.  This allows any 

number of non-induction variables to be present in a summation. 

 The command (sum(1, ...)) generated by the timing 

analyzer is passed to the new summation solver Emtadel.  

Emtadel parses this string to retrieve the information required for 

evaluation (induction variable and the upper and lower bounds).  

At this point, Emtadel’s internal representation closely resembles 

the equivalent handwritten summation 
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 As alluded to previously, Emtadel solves summations by 

using the Bernoulli formulas.  For example, 
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The innermost summation – in this case, the summation with 

induction variable loop2 – is always solved first.  The resulting 

intermediate solution is loop1.  This answer is only applicable 

under the following condition: loop1 must be greater than zero, 

the lower bound of the summation.  If this condition is not upheld, 

the equation is invalid, for the loop would be zero-trip.  After this 

intermediate solution is obtained, Emtadel solves the outer 

summation.  The solution to this summation is identical to the 

solution of  
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where the previous result has been substituted into the original 

summation.  The final answer is 
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Calculating the average number of iterations of the inner loop (in 

terms of the outer loop) is now trivial – dividing by the outer 

loop's total number of iterations produces 
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 Since a general example has already been explained, another 

summation will demonstrate the complexity of calculating 

symbolic solutions when loops may be zero-trip.  One example 

that requires a condition to be placed on the final answer is 

for (i = 1; i <= z; i++) 

  for (j = 7; j <= i; j++) 

    for (k = 5; k <= i; k++) 

      sum++; 

where z is once again a function parameter.  Emtadel receives the 

command sum(1, k=5 .. i by j=7 .. i by i=1 .. 

z) and generates the equivalent sigma notation 
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The innermost summation will evaluate to zero on all iterations 

where i < 5.  Similarly, the middle summation will also be 

partially zero-trip. 

 The innermost summation must be evaluated first.  The 

intermediate solution in this case is i – 4 if i ≥ 5.  The condition (i 

≥ 5) allows Emtadel to track (partially) zero-trip sums.  To 

calculate the middle summation, previous conditions must first be 

considered.  In this case, the variable i must be greater than or 

equal to 5, but the current summation demands that i be greater 

than or equal to 7 since this summation's zero-trips never include 

an inner summation’s sum.  Therefore, the condition i ≥ 5 is 

updated to i ≥ 7.  Emtadel uses the appropriate Bernoulli formula 

on each individual term.  The intermediate solution is i2 – 10i + 24 

if i ≥ 7.  When the outer summation is reached, the lower bound is 

replaced by the conditional demand i ≥ 7.  The new lower bound 

is 7, and the summation only iterates from i = 7 to z.  Hence, any 

(partially) zero-trip loops have been taken into account through 

the use of the conditional expression.  The final answer is 
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if z ≥ 7.  If z is less than 7, the summation evaluates to zero. 

 This symbolic approach allows the timing analyzer to input 

loop variable information directly instead of having to form 

equations independently.  The improvement replaces a significant 

portion of code contained within the timing analyzer and 

improves encapsulation.  Additionally, any condition(s) placed on 

the final solution allows the timing analyzer itself to place 

conditions on the validity of its final answer. 

 The timing analyzer uses Emtadel when the number of 

iterations of a loop must be averaged.  This case only occurs in 

triangular loop nests like the one presented above and cases 2 and 

4 in Figure 3.  Emtadel will not be used to calculate the number of 

iterations of nested numeric or parametric loops.  Examples 

demonstrating all these different types of loops are in Figure 3.  

The WCET bounds shown in the figure were determined by using 

our enhanced parametric timing analyzer.  To reiterate, Emtadel is 

called only when nested loops are triangular in nature. 

5. ANALYSIS USING SYMBOLIC 

FORMULAS 
 The summation solver Emtadel requires a polynomial data 

structure to calculate and represent the symbolic solution of a 

summation.  The timing analyzer also uses polynomials to 

compute parametric results.  We adopt the following definition of 

polynomials: a polynomial contains one or more terms combined 

using addition.  A term consists of zero or more variables each 

raised to a power.  Each term is multiplied by either a constant 

(any rational number) or a polynomial chain.  A polynomial chain 

allows the timing analyzer to express a parametric formula as the 

maximum (or minimum) of two or more polynomials.  This 

functionality is required when the largest (or smallest) of a group 

of polynomials cannot be known until the values of variables are 

substituted into the expressions.  The major fields in our 

implementation are presented in Table 1.
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C code 
for (i = 0; i < 8; i++) 

  for (j = 0; j < 16; j++) 

    a[i][j] = 0; 
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for (i = 0; i < 8; i++) 

  for (j = 0; j < i; j++) 

    a[i][j] = 0; 
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for (i = 0; i < n; i++) 

  for (j = 0; j < i; j++) 

    a[i][j] = 0; 
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2
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LOOP 2 = (5/2)n + (1/2) 

Figure 3:  Examples of numeric and parametric loop nests.

Table 1: Major classes and fields in  

the polynomial data structure 

Class Fields 

Polynomial vector<Term> terms 

Term vector<VariablePower> vps 

Rational coefficient 

PolynomialChain 

coefficientPolynomial 

bool useCoefficientPolynomial 

Polynomial

Chain 

vector<Polynomial> 

polynomials 

int operation // MIN or MAX 

Variable 

Power 

String variable 

Rational power 

 Since polynomial expressions encompass integral 

expressions, it made sense to move the underlying structure of the 

timing analyzer away from integers and to polynomials.  The 

existing polynomial data structure presented two obstacles that 

had to be overcome before this could occur.  First, the comparison 

functionality was limited to equality.  Two polynomials were 

considered equal only if they were exact copies of each other.  

Altering the order of terms or variables within terms would result 

in polynomials being considered unequal.  The timing analyzer 

naturally requires all of the inequality operators for appropriate 

control flow.  The second limitation of the polynomial data 

structure was that all mathematical operations require special 

function calls.  None of these functions considered polynomial 

chains.  When a branch is found in a parametric program, the 

timing analyzer must return a Max(…) expression representing 

the WCET of the timing node.  The mathematical functions would 

perform the operation on the first polynomial and ignore other 

polynomials in the Max expression. 

 The PolynomialChain class allows both minimum and 

maximum expressions.  One reason for this functionality is 

completeness – the polynomial class as a whole was designed to 

be stand-alone.  But the primary reason is actually the timing 



   

analysis algorithm.  Although one normally thinks of WCET as a 

maximum of several possible values (see Table 3), intermediate 

steps require calculating a minimum.  Thus, it is possible to find a 

Min(…) expression as part of the WCET. 

 The new polynomial class would have the following 

requirements.  It would provide comparable performance for 

operations involving constants.  While some overhead is 

unavoidable, representing an integer as a polynomial must not 

noticeably degrade performance.  Mathematical operations on 

polynomials would also have to be more efficient than the 

previous implementation.  Finally, all mathematical and 

commonly used operators would be overloaded so the class could 

easily take the place of integers. 

 As the polynomial class was written, classes from C++ 

standard template library – namely vectors (see Table 1) – were 

used to maximize performance.  The result is an improved data 

structure which achieves the aforementioned goals.  The 

additional overhead of the polynomial class does not degrade the 

performance of the timing analyzer.  Even timing the benchmark 

Matmult (see Table 2 and Table 3) which has fifteen timing nodes 

still completes in less than three seconds on a Sun Ultra 10 

workstation. 2  Polynomials may be simplified after each operation 

which means successive operations complete more quickly. 

 The inequality functions do present a practical limitation 

when non-constant expressions are compared.  Comparison 

between two polynomials is modeled after comparison in Java: 

there is a comparison function which returns an integer: zero if the 

polynomials are equivalent, a negative number if this polynomial 

is less than the specified one, and a positive number otherwise.  

The result of some comparisons (e.g. those between polynomials 

with multiple variables) cannot be determined.  When this is the 

case, the comparison function throws a logic exception.  The 

overloaded operators will catch this exception and return false.  

This means the inequality operators no longer represent a closed 

relation. 

 For example, let poly1 and poly2 be polynomials 

containing the values x and y.  When the function 

poly1.compareTo(poly2) is called, a logic exception is 

thrown because the answer is uncertain without knowing the 

values of x and y.  Because the overloaded operators catch the 

exception, poly1 <= poly2 is false as is poly1 > poly2.  If 

the calling code relies on this comparison to guide program flow, 

both conditions must be checked, and a final (else) case may need 

to be added for comparisons which cannot be determined. 

6. PARAMETRIC TIMING ANALYSIS 
 Parametric timing analysis utilizes two distinct segments of 

analysis to achieve tight WCET bounds.  The first considers 

branch constraints of individual paths within a loop.  The second 

handles the timing of the entire loop and enforces the constraint 

information reported by the first. 

6.1 Branch Constraint Detection 
 The timing analyzer automatically performs branch 

constraint detection using the control-flow information reported 

by the VPO C compiler [2, 5].  Branch constraint detection in 

parametric benchmarks falls into three separate categories: 

infeasible paths, effect-based constraints, and the 

                                                 
2 The Sun Ultra 10 workstation used during the test contains an 

UltraSPARC IIi processor running at 440 MHz and 256 MB of 

memory. 

minimum/maximum number of iterations.  The amount of 

automatic detection in parametric benchmarks is limited by the 

control-flow information whereas the amount of control-flow 

information reported for numerical benchmarks is considerably 

more and allows additional analysis. 

 The first part of branch constraint detection finds infeasible 

paths within the loop.  These infeasible paths are disregarded 

during later path and loop analysis.  The second considers effect-

based constraints.  Effect-based constraints check to see which 

paths can or cannot follow each other.  The final stage of 

propagating branch constraints in parametric benchmarks assigns 

a minimum and maximum number of iterations for each path.  

The loop analysis algorithm limits the number of times a path may 

be executed based on these cumulative results [5]. 

6.2 WCET Loop Analysis 
 The paths of a loop or function are each independently 

evaluated.  Once the WCET has been established for each path, 

the longest path is selected and used in the algorithm abstracted 

below [6]. 

// process loop iterations 
iters = 0; 

while (iters < N) 

{ 

// process iters while longest path has first miss/hit 
do 

{ 

iters = iters + 1; 

wcpath = find the longest path; 

cycles =  

cycles + wcpath->cycles; 

} while (iters < N && caching 

behavior of wcpath can change); 

// process remaining iterations of longest path 
if (iters < N) 

{ 

iters_to_do = remaining iterations 

of longest path; 

cycles = cycles +  

(iters_to_do * wcpath->cycles); 

iters = iters + iters_to_do; 

} 

} 

Such an algorithm accounts for updates in the instruction cache on 

different iterations of a loop.  When the outermost while loop 

terminates, the variable cycles contains the WCET of the loop.  

If parametric timing analysis is being performed, the WCET of 

the loop will be a symbolic formula instead of a constant. 

 Each loop or function is considered a node in the timing tree.  

Nodes are processed in a bottom up manner meaning the timing 

bounds of child nodes must be established before the node itself 

may be evaluated.  A child node is considered a single block 

which is inserted into the parent node [11, 16]. 

7. EXPERIMENTAL PLATFORM 
 A graphical automated tester has been designed and 

implemented to check the results of the timing analyzer against a 

hardware simulator.  This program allows the simulated number 

of cycles to be compared with the estimation produced by the 

timing analyzer: both the simulator and the timing analyzer are 

run automatically from the automated tester without receiving any 



   

additional user input.  A ratio of the estimated cycles and the 

simulated cycles provides immediate feedback on the percent 

difference.  The automated tester immediately flags as incorrect 

benchmarks for which the timing analyzer produces either an 

overestimation greater than a specified percentage or any 

underestimation.  This highly flexible program makes testing the 

timing analyzer easier and can identify timing nodes where the 

timing analyzer’s output is incorrect.  Such functionality 

facilitates quick debugging when a mistake in the timing analyzer 

is found. 

 The graphical tester allows users to vary multiple input 

values to the timing analyzer and hardware simulator.  A user may 

choose any benchmark and the architecture3 (e.g. SPARC) for 

running the test.  The cache configuration – including the number 

of cache lines, cache associatively, the number of bytes per line, 

and the miss penalty – may be adjusted.  The user may select 

appropriate discrete values (powers of two) for the number of 

lines, associativity, and the number of bytes per line of cache.  

The miss penalty may range from zero to fifty where zero 

represents all cache hits.  Finally, parametric benchmarks allow 

different numbers of loop iterations to be specified.  The number 

of iterations is used as input to the simulator and to evaluate the 

symbolic formula produced by the timing analyzer.  In the case of 

nested parametric loops, the outermost loop executes for the 

specified number of iterations, and all inner loops – regardless of 

nesting level – execute for double the number.  This ensures both 

loops are being timed accurately.  A user may also choose to run 

all of the benchmarks at once using an identical cache 

configuration.  Attempting to hand check the timing analyzer for 

all of the different dimensions of analysis is impractical.  The 

automated tester couples the accuracy of a hardware simulator 

with the ease of using a GUI application. 

 The database tab lists all of the benchmarks that have been 

run since starting the automated tester.  A glance at the table can 

quickly verify the accuracy of the timing analyzer and identify 

any benchmarks which may require minor changes to the timing 

analyzer.  Running the same benchmark with different parameters 

will result in multiple instances of the benchmark in the listing.  

The exact parameters used to run each benchmark may be viewed 

by selecting the appropriate instance of the benchmark.  If desired, 

a database may be saved for future reference or reopened from a 

previous session. 

 The simulator tab contains a list of each benchmark which 

has been simulated.  The majority of time spent checking a 

benchmark comes from simulation.  The process is sped by saving 

the information reported by the simulator when each benchmark is 

run.  Asking the automated tester to run a benchmark which has 

previously been simulated results in rerunning the timing analyzer 

and using the saved simulator data.  This saved information may 

be deleted for one or all of the benchmarks – this results in 

simulating each benchmark again. 

 Even when the timing analyzer does not produce satisfactory 

results, the automated tester can produce a detailed analysis of the 

benchmark.  Detailed analysis provides the simulated and 

                                                 
3 Different architectures necessitate a separate hardware simulator 

for each platform.  Benchmarks are compiled for the specified 

architecture and run with the appropriate simulator. 

estimated number of cycles for every node in the timing tree.  

This quickly focuses attention on the problematic loop or 

function. 

 Figure 4 is a screen shot of the automated tester.  On the left 

side of the window is the listing of benchmarks.  The names of the 

benchmarks come from a text file which is opened using the Load 

List button.  Underneath the Load List button is a check box 

labeled “Build section cycles.”  This check box is used to generate 

detailed analysis from both the hardware simulator and the timing 

analyzer.  The right side allows the user to modify the 

aforementioned testing parameters using sliders and drop down 

list boxes.  On some architectures (e.g. ones without cache), the 

cache specifications will be ignored by both the timing analyzer 

and hardware simulator.  The Build button runs the currently 

selected benchmark (in the left pane), and the Build All button 

runs all of the benchmarks using the specified cache 

configuration.  The text box at the bottom contains the results of 

the timing analyzer (estimated cycles) and hardware simulator 

(simulated cycles) and the ratio of the two.  The ratio provides the 

percent difference of the two.  In the case of a parametric 

benchmark, the symbolic WCET is displayed as well as a cycle 

count which is obtained by evaluating the symbolic formula with 

the number of iterations specified by the user.  The polynomial 

evaluation is automatically performed by the automated tester at 

runtime. 

 Table 2 lists a number of test programs which were chosen to 

demonstrate the effectiveness of Emtadel and the enhanced timing 

analyzer. 

Table 2: Parametric Test Programs 

Program Description 

Integral Evaluates a double integral over a trapezoidal 

region. 

Matmult Multiplies two square matrices and stores the 

result in a third matrix. 

Sprsin Converts an integer matrix into row-indexed 

sparse storage mode. 

Sumcntmatrix Sums and counts the number of positive and 

negative elements in a matrix. 

Summatrix Adds two square matrices and stores the result 

in a third matrix. 

Summinmax Sums the minimum and maximum of the 

corresponding elements of two integer 

vectors. 

 The parametric benchmarks used are identical to numeric 

versions except that the limit values of loops are parameters 

passed into the function.  The main function receives a different 

command line argument for each different loop limit.  The 

argument is a left shift amount which means 20, 21, …, 29 are all 

valid numbers of maximum iterations.  This approach introduces 

the minimum amount of extra code into the benchmark’s source.  

We chose these numbers for convenience in testing; the timing 

analyzer is not limited to benchmarks which contain an unknown 

number of iterations which are powers of two.



   

 

Figure 4: Screenshot of Automated Testing Application 

 

 Table 3 shows the results of the benchmark programs.  The 

column Estimated Cycles gives the execution time predicted by 

the timing analyzer.  Observed Cycles was obtained by using the 

integrated instruction cache and pipeline simulator which received 

worst case input data. 

 As mentioned in the introduction, all of the benchmarks 

listed implicitly contain control-flow information because they 

have been parameterized.  The timing analyzer performs 

additional control-flow constraint analysis on all benchmarks as 

previous described in [5].  Had this analysis not been performed, 

the benchmark Summinmax (which contains an infeasible path) 

would have an additional overestimation of 5 percent.  Although 

multiple paths exist in each timing node, only the benchmark 

Integral reports its final answer as the Max of two distinct 

polynomials.  In the intermediate steps, the other benchmarks also 

calculated a symbolic solution using Max(…) expressions.  

Nonetheless, the polynomial data structure was able to determine 

in these other cases that one of the polynomials was always larger 

than the other.  Hence, the smaller polynomial expression has 

been subsumed by the larger.

 

Table 3: Results for Parametric Test Programs 

Program Formula n iterations 

Observed 

Cycles 

Estimated 

Cycles Ratio 

Integral 
Max((153/2)n2 – n + (193/2),  

(153/2)n2 + (49/2)n + 90) 

16 20,026 20,066 1.002 

  128 1,256,562 1,256,602 1.000 

Matmult 31n3 + 186n2 + 61n + 361 16 175,399 175,929 1.003 

  64 8,891,095 8,892,585 1.000 

Sprsin 36n2 + 33n + 185 16 9,702 9,929 1.023 

  128 592,774 594,233 1.002 

Sumcntmatrix 106n2 + 36n + 298 16 27,869 28,010 1.005 

  128 1,741,357 1,741,610 1.000 

Summatrix 93n2 + 35n + 199 16 24,486 24,567 1.003 

128 1,528,310 1,528,391 1.000 

Summinmax 16n + 73 16 318 329 1.035 



   

128 2,110 2,121 1.005 

8. FUTURE WORK 
 Only the first five Bernoulli formulas (through i5) have been 

entered into Emtadel.  This limit is not a serious as it may first 

appear, for the loops in the summation command would all have 

to be triangular to cause a problem.  Although generalized ways to 

calculate the Bernoulli numbers and formulas exist, the difficulty 

in converting these automatically into a sequence of polynomial 

operations make such a solution both unwieldy and prohibitive.  

As mentioned in the introduction, when the number of paths 

contained within a timing node exceeds a defined maximum, 

control flow can be partitioned and synthetic timing nodes created 

[9].  When the timing analyzer encounters five nested triangular 

loops, it could create a synthetic section which would be handled 

similarly to a function call.  Such an approach would overcome 

the lack of a generalized Bernoulli formula. 

 A polynomial should be able to accept boundary conditions, 

and these could aid in inequality operations.  The loops 

encountered by the timing analyzer would not be executed in the 

presence of a negative variable.  If a loop iterates from zero to a 

negative number (and the loop variable has a positive increment), 

the loop is zero-trip.  Such bounds checks allow fewer Max(…) 

expressions to be generated by the timing analyzer. 

9. CONCLUSION 
The contributions of this paper are threefold.  First, we describe a 

generalized procedure for computing summations that represent 

the number of iterations of nested loops.  This approach can 

handle numeric as well as multi-variate quantities and express the 

number of iterations in terms of loop invariant parameters.  

Second, we significantly enhanced an existing timing tool so that 

it represents both the number of iterations as well as the WCET of 

code segments in terms of generalized polynomial expressions 

rather than simply a numeric number of cycles.  We then 

enhanced its loop analysis algorithm to take advantage of our new 

polynomial representation and accurate loop iteration 

computations.  The result is that we are now able to statically 

bound the WCET for a larger class of benchmarks.  Finally, our 

tool features a user-friendly interface which a user can utilize to 

quickly gain feedback on the results of a desired benchmark.  

Using the GUI, the user can vary the parameters of benchmark 

testing according to a variety of dimensions, including the choice 

of hardware platform and cache configuration, as well as 

specifying the number of loop iterations for parametric 

benchmarks. 
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