

Generalizing Parametric Timing Analysis

ABSTRACT
In the design of real-time and embedded systems, it is important

to establish a bound on the worst-case execution time (WCET) of

programs to assure via schedulability analysis that deadlines are

not missed. Static WCET analysis is performed by a timing

analysis tool. This paper describes novel improvements to such a

tool, allowing parametric timing analysis to be performed.

Parametric timing analyzers receive an upper bound on the

number of loop iterations in terms of an expression which is used

to create a parametric formula. This parametric formula is later

evaluated to determine the WCET based on input values only

known at runtime. Effecting a transformation from a numeric to a

parametric timing analyzer requires two innovations: 1) a

summation solver capable of summing non-constant expressions

and 2) a polynomial data structure which can replace integers as

the basis for all calculations. Both additions permit other methods

of analysis (e.g. caching, pipeline, constraint) to occur

simultaneously. Finally, our tool features a user-friendly

graphical interface to easily obtain results for any desired

program. Combining these techniques allows our tool to statically

bound the WCET for a larger class of benchmarks, which more

closely match contemporary real-time and embedded application

codes and allows users an easy method for procuring results.

Categories and Subject Descriptors
C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED

SYSTEMS]: REAL-TIME AND EMBEDDED SYSTEMS

General Terms
Verification, Reliability

Keywords
Worst-case execution time (WCET) analysis, parametric timing

analysis

1. INTRODUCTION
 Embedded systems, especially those in safety-critical or hard

real-time environments, typically require that timing constraints

be met. To guarantee these systems will meet deadlines, the

worst-case execution time (WCET) of each program must be

known. Knowledge of the WCET can also be used to

dynamically scale voltage when a scheduler detects future slack

time [1, 7, 11, 12]. This facilitates power savings, an especially

important aspect in embedded systems. The process of

determining the WCET of a program is known as timing analysis.

 Two different approaches to find the upper bound exist:

dynamic and static [3, 8, 17]. Dynamic timing analysis attempts

to experimentally determine worst-case input data. This approach

is error-prone and usually cannot guarantee that the absolute

maximum has been found. In contrast, static timing analyzers

examine all paths within a program and individually time each of

them by taking into account the architectural components of the

specified platform [11, 16]. If the number of paths exceeds a

predefined maximum, control flow can be partitioned into

synthetic sections that are each handled individually by the timing

analyzer [9]. Once the individual paths have been timed, they are

coalesced into loops, functions, and finally an entire program [11,

16]. The composition of paths abstracts from concrete program

input and assures that a safe upper bound of the WCET is

analytically derived. This bound is safe in that it never

underestimates the actual WCET.

 Static timing analysis has traditionally required loops to

contain a constant number of iterations so analyzers may produce

constant worst case execution bounds. Such constraints on input

programs make this form of timing analysis numerical: the

number of loop iterations is constant as is the final result from the

timing analyzer. On the other hand, parametric timing analysis

allows the number of loop iterations to be unknown at compilation

as long as this value may be written as an expression. Such

flexibility expands the class of programs which may be analyzed.

Instead of providing a constant upper bound for a loop, a symbolic

formula is created using the expression representing the number

of loop iterations. The formula may be evaluated later to obtain

the execution time for any given input [11, 16]. One example of a

useful application for parametric timing analysis is image

processing applications where the image dimensions are not

known a priori [18].

 We obtained a version of a timing analyzer [5, 9, 11, 16] and

enhanced it to support generalized parametric analysis. The

conversion required a three-fold process. First, a summation

solver capable of summing non-constant numbers of iterations

was written. Next, an advanced polynomial data structure was

developed to express parametric formulas. Naturally, the

polynomial data structure should not significantly slow numerical

calculations. Finally, the polynomial class was integrated into the

timing analyzer to replace integers in calculations. Constraint

analysis – determining which paths in a loop can execute on

certain iterations – can still take place with polynomial

functionality.

 Although these goals appear simple at first, parametric

benchmarks present special problems to timing analyzers.

Numerical timing analyzers receive a numerical upper bound on

the maximum number of loop iterations that is either

automatically determined by analyzing the program or is input by

the user. Parametric analyzers receive the maximum number of

loop iterations as an expression whose value is unknown at

compilation (e.g. for i = 0 .. n-1 contains n iterations).

Because the expression must be evaluated at runtime, the loop

body may not execute even once (e.g. the value of n could be -1).

Such uncertainty means every parametric benchmark implicitly

contains control flow even when the numerical version does not.

 Figure 1 shows the blocks in a numerical and parametric

version of the same benchmark. Note that the parameterized loop

(body) may never execute (since there is a conditional check to

ensure that the initial value is less than the limit). In the presence

of an unknown number of iterations, parametric timing analyzers

must present a solution encompassing all possibilities. These

include the case where the loop body does not execute. This

inconclusiveness complicates the process of timing analysis.

// numerical

// MAX is constant
for(i = 0; < MAX; ++i)

 a[i] = i;

// parametric

// itr is function parameter
for(i = 0; < itr; ++i)

 a[i] = i;

Figure 1: Blocks in a numerical and parametric benchmark.

 Because the creation of a “true” parametric timing analyzer

involves both a summation solver capable of symbolically

evaluating loop iterations and an improved polynomial data

structure, it was logical to split work into two separate phases.

The first phase developed the symbolic summation solver. The

second segment of work focused on implementing and integrating

the polynomial data structure.

 Previous work (described in Section 2) in timing analysis has

been centered on numerical analysis where the maximum number

of iterations for loops must be known at compilation. When loops

are non-rectangular in nature, averaging techniques are used to

guarantee tight WCET bounds (Section 2.2). Section 4 discusses

the tool Emtadel which was written to handle the calculation of

the number of iterations of nested triangular loops. This tool

replaces Ctadel, a general-purpose algebraic simplifier [15].

Section 5 provides the details of the polynomial classes which

were written to achieve increased performance during timing

analysis calculations. We highlight the algorithms used in

parametric timing analysis in Section 6 before discussing our

experimental platform and results in Section 7.

 In this paper, we describe novel techniques for bounding the

WCET of parameterized programs. First, we describe a procedure

for calculating the number of iterations of nested loops in terms of

loop invariant parameters. Secondly, an existing timing tool was

enhanced so parametric formulas rather than numeric quantities

could be used in all calculations. Thirdly, a graphical user

interface allows immediate feedback on the results of a desired

program. This interface allows a large number of testing

parameters – including hardware platform, cache configuration,

and the number of loop iterations – to be modified. The final

result is a static timing analyzer capable of determining WCET

bounds for programs which are likely to be encountered in today’s

real-time embedded systems.

2. PREVIOUS WORK

2.1 Timing Analysis
 The numerical timing analyzer that we obtained is illustrated

in Figure 2. A modified C compiler (VPO) emits control-flow

and branch constraint information during compilation [2]. This

information is used by a static cache simulator so the caching

categorization (e.g. always miss, always hit, first miss, first hit) of

each instruction may be determined. The timing analyzer

combines the control-flow, constraint, caching, and machine

dependent (e.g. pipeline) information to reach an accurate upper

bound of the WCET.

 As the other studies of static timing analysis stipulate [5, 11,

16], a number of other conditions must be met. First, recursive

programs are not allowed. Secondly, there can be no indirect

calls. Finally, loops must be structured which for this purpose

means they have a single entry point.

2.2 Bounding Loop Iterations
 A stand-alone software package was used to calculate

integral solutions for nested triangular loops. Triangular means

that the number of iterations of the inner loop depends on the
induction variable of the outer loop. Consider the code fragment

for (x = 0; x < 3; ++x)

 for (y = 0; y <= x; ++y)

 statement;

.

. .

. . .

The dots to the right indicate the number of iterations of the inner

loop for each value of x. Because the number of iterations is non-

constant, the minimum, maximum, and average number of

iterations must be calculated. The software package could handle

any level of loop nesting and could determine if the number of

loop iterations is zero even when it is not immediately apparent by

examining the original loops.

 For the example presented above, the equivalent summation

would be

2

0 0

))1((_
x

x

y

iterationstotal (1)

which equals 6. The minimum number of iterations of the inner

loop is 1, the maximum is 3, and the average is 2. The average

number of iterations of the inner loop is calculated by dividing the

sum (6) by the total number of iterations of the outer loop (3).

The concept of representing the number of loop iterations as a

summation was motivated by the work of Sakellariou [13].

 Averaging the number of iterations considers the possibility

of the inner loop being zero-trip or partially zero-trip. A zero-trip

loop derives its name from the fact that a summation whose lower

bound exceeds its upper bound evaluates to zero. Hence, a zero-

trip loop does not execute the loop body. A partially zero-trip

loop fails to execute the loop body on some iterations. If the

condition of the inner loop in the example presented above was y

< x (instead of y ≤ x), the inner loop would be partially zero-trip.

On the first iteration of the outer loop, x would be zero and the

inner loop would not execute. On the second and later iterations,

the inner loop would execute. Hence, the inner loop would be

partially zero-trip in the modified example. Using the average

number of iterations for triangular loops achieves tight WCET

bounds.

Figure 2: Static Timing Analysis Process

 Using rational numbers in the calculations allows even more

accuracy when averaging the number of iterations of triangular

loop nests. In the previous example, changing the conditional

expression of the outer loop to x ≤ 3 (instead of x < 3) would

mean that the total number of iterations would be 10. Dividing by

the total number of iterations of just the outer loop (4) provides

the average number of iterations (2 ½). Representing the number

of iterations as an integral quantity would mean that the inner

loop’s average number of iterations would be 3. Hence, a rational

representation further tightens WCET bounds.

 In the case of parametric loops, a naïve approach would

derive the total time of the loop through a formula resembling

total_time =

iteration time * iterations

where the number of iterations is a variable. Nested parametric

loops requiring the number of iterations to be averaged would

create a problem. The inner loop’s final cycle count would be a

function of the outer loop's induction variable instead of the

variable passed into the function. For example, the code fragment

(where z is a function parameter)

for (x = 0; x < z; ++x) // loop 1

 for (y = 0; y < x; ++y) // loop 2

 sum += (double) (x * x – y * y);

would produce the following output:1

 TOTAL TIME

LOOP 2 51x + 4

The inner loop in this case should report its time in terms of the

function parameter z. Only a summation solver capable of

calculating the number of iterations symbolically could correct

this naïve approach. Then, the formula for the average number of

iterations could be used which would allow the same algorithm to

solve both integral and polynomial cases.

3. RELATED WORK
 Lisper presented a procedure to bound the WCET for

parametric programs [10]. His approach is based on abstract

interpretation of the program’s execution and integer linear

programming to compute the WCET bound. In general, both of

these aspects are computationally intensive. The approach has not

been fully implemented so its accuracy has not been determined.

 Colin and Bernat proposed a scope-tree representation of a

program in which control-flow constraints are expressed as

1 The coefficient of x, 51, is the number of cycles required to

complete one iteration of loop 2. The constant term, 4, is the

pipeline fill time encountered on the first iteration.

annotations to the tree [4]. Execution frequencies of blocks are

stored, and these can be parametric as well as numeric values.

Control-flow constraints can also be specified. The tree can then

be traversed to evaluate the WCET. Unfortunately, experimental

results of the implementation are not provided.

 Sandberg et al. have used program slicing to derive control-

flow information [14]. Program slicing determines subsets of a

program which can affect other sections of the program. This

allows segments which do not affect program flow to be

disregarded during control-flow analysis. Consequently, the

space and time complexity required during control-flow analysis

is greatly reduced. Being able to handling control-flow analysis

automatically greatly diminishes the need for writing control-flow

information in manual annotations which is painstaking and error-

prone work.

4. COMPUTING ITERATIONS
 The VPO C compiler (see Figure 2) creates a control-flow

information file during compilation [2]. The timing analyzer

obtains loop specific information from this control-flow file. This

data includes the iterating (induction) variable and iteration

information consisting of the minimum and maximum number of

iterations (provided these are numeric quantities) or the initial,

limit, and increment value of the induction variable [6]. If a

parametric loop is nested within another parametric loop, the outer

loop's iteration information is also reported. This allows a group

of summations representing the loop structure to be generated.

The program Emtadel handles the evaluation of the loop

summations.

 The popular numerical and symbolic computation system

Mathematica allows C programmers to interact with its extensive

library of functions. Although the features of this software exceed

those of a summation solver written in C, two drawbacks exist.

First, the portability of the timing analyzer would be

compromised. The timing analyzer could only run on systems

which had Mathematica installed, and changes to the Mathematica

installation would necessitate updates to the environment

variables used to access Mathematica functions. Additionally,

computer algebra systems do not provide guards on the solutions

which are returned. In the example presented above, z must be

greater than zero. If such conditions are not met, the summation

should be zero but in certain cases, substituting a value for z

directly into the formula returned could result in a negative

answer.

 To illustrate calculating the average number of iterations for

triangular loop nests, we first consider the control-flow

information generated by the compiler. Loop information consists

of the induction register, beginning value, limiting register (or

value), relational operator, and information about the parent loop

[6]. Using a summation grammar, the timing analyzer can create

the summation command sum(1, loop2 = 0 .. loop1 –

1 by loop1 = 0 .. z – 1) for the nested loops presented

above. Note that the loops appear in reverse order when

compared to a handwritten summation. A symbolic summation

solver calculates the total number of iterations nearly identically

to the way the summation is solved by hand. This allows any

number of non-induction variables to be present in a summation.

 The command (sum(1, ...)) generated by the timing

analyzer is passed to the new summation solver Emtadel.

Emtadel parses this string to retrieve the information required for

evaluation (induction variable and the upper and lower bounds).

At this point, Emtadel’s internal representation closely resembles

the equivalent handwritten summation

1

01

11

02

))1((_
z

loop

loop

loop

iterationstotal (2)

 As alluded to previously, Emtadel solves summations by

using the Bernoulli formulas. For example,

n

i

nn
i

0 2

)1(
 (3)

n

i

nnn
i

0

2

6

)12)(1(
 (4)

The innermost summation – in this case, the summation with

induction variable loop2 – is always solved first. The resulting

intermediate solution is loop1. This answer is only applicable

under the following condition: loop1 must be greater than zero,

the lower bound of the summation. If this condition is not upheld,

the equation is invalid, for the loop would be zero-trip. After this

intermediate solution is obtained, Emtadel solves the outer

summation. The solution to this summation is identical to the

solution of

1

01

)1(_
z

loop

loopiterationstotal (5)

where the previous result has been substituted into the original

summation. The final answer is

 zziterationstotal
2

1

2

1
_ 2 (6)

Calculating the average number of iterations of the inner loop (in

terms of the outer loop) is now trivial – dividing by the outer

loop's total number of iterations produces

2

1

2

1
_ ziterationsinner (7)

 Since a general example has already been explained, another

summation will demonstrate the complexity of calculating

symbolic solutions when loops may be zero-trip. One example

that requires a condition to be placed on the final answer is

for (i = 1; i <= z; i++)

 for (j = 7; j <= i; j++)

 for (k = 5; k <= i; k++)

 sum++;

where z is once again a function parameter. Emtadel receives the

command sum(1, k=5 .. i by j=7 .. i by i=1 ..

z) and generates the equivalent sigma notation

z

i

i

j

i

k

iterationstotal
1 7 5

)))1(((_ (8)

The innermost summation will evaluate to zero on all iterations

where i < 5. Similarly, the middle summation will also be

partially zero-trip.

 The innermost summation must be evaluated first. The

intermediate solution in this case is i – 4 if i ≥ 5. The condition (i

≥ 5) allows Emtadel to track (partially) zero-trip sums. To

calculate the middle summation, previous conditions must first be

considered. In this case, the variable i must be greater than or

equal to 5, but the current summation demands that i be greater

than or equal to 7 since this summation's zero-trips never include

an inner summation’s sum. Therefore, the condition i ≥ 5 is

updated to i ≥ 7. Emtadel uses the appropriate Bernoulli formula

on each individual term. The intermediate solution is i2 – 10i + 24

if i ≥ 7. When the outer summation is reached, the lower bound is

replaced by the conditional demand i ≥ 7. The new lower bound

is 7, and the summation only iterates from i = 7 to z. Hence, any

(partially) zero-trip loops have been taken into account through

the use of the conditional expression. The final answer is

 25
6

115

2

9

3

1 23 zzziterations (9)

if z ≥ 7. If z is less than 7, the summation evaluates to zero.

 This symbolic approach allows the timing analyzer to input

loop variable information directly instead of having to form

equations independently. The improvement replaces a significant

portion of code contained within the timing analyzer and

improves encapsulation. Additionally, any condition(s) placed on

the final solution allows the timing analyzer itself to place

conditions on the validity of its final answer.

 The timing analyzer uses Emtadel when the number of

iterations of a loop must be averaged. This case only occurs in

triangular loop nests like the one presented above and cases 2 and

4 in Figure 3. Emtadel will not be used to calculate the number of

iterations of nested numeric or parametric loops. Examples

demonstrating all these different types of loops are in Figure 3.

The WCET bounds shown in the figure were determined by using

our enhanced parametric timing analyzer. To reiterate, Emtadel is

called only when nested loops are triangular in nature.

5. ANALYSIS USING SYMBOLIC

FORMULAS
 The summation solver Emtadel requires a polynomial data

structure to calculate and represent the symbolic solution of a

summation. The timing analyzer also uses polynomials to

compute parametric results. We adopt the following definition of

polynomials: a polynomial contains one or more terms combined

using addition. A term consists of zero or more variables each

raised to a power. Each term is multiplied by either a constant

(any rational number) or a polynomial chain. A polynomial chain

allows the timing analyzer to express a parametric formula as the

maximum (or minimum) of two or more polynomials. This

functionality is required when the largest (or smallest) of a group

of polynomials cannot be known until the values of variables are

substituted into the expressions. The major fields in our

implementation are presented in Table 1.

 Numeric Parametric

R
ec

ta
n

g
u

la
r

Case 1 Case 3

C code
for (i = 0; i < 8; i++)

 for (j = 0; j < 16; j++)

 a[i][j] = 0;

C code
for (i = 0; i < n; i++)

 for (j = 0; j < m; j++)

 a[i][j] = 0;

iteration space
................
................
................
................
................
................
................
................

iteration space
............... … .
............... … .
............... … .
............... … .
............... … .
............... … .
 …
............... … .

summation formula

8

0

16

0

))1((
i j

summation formula

n

i

m

j0 0

))1((

WCET bound
LOOP 1 = 708

LOOP 2 = 83

WCET bound
LOOP 1 = 4 + 14n + 5nm

LOOP 2 = 3 + 5m

T
ri

an
g
u

la
r

Case 2 Case 4

C code
for (i = 0; i < 8; i++)

 for (j = 0; j < i; j++)

 a[i][j] = 0;

C code
for (i = 0; i < n; i++)

 for (j = 0; j < i; j++)

 a[i][j] = 0;

iteration space

.
..
...
....
.....
......
.......

iteration space

.
..
...
....
.....
…
... … .

summation formula

n

i

i

j0 0

))1((

summation formula

n

i

i

j0 0

))1((

WCET bound
LOOP 1 = 267

LOOP 2 = 32

WCET bound
LOOP 1 = (5/2)n

2
 + (23/2)n + 4

LOOP 2 = (5/2)n + (1/2)

Figure 3: Examples of numeric and parametric loop nests.

Table 1: Major classes and fields in

the polynomial data structure

Class Fields

Polynomial vector<Term> terms

Term vector<VariablePower> vps

Rational coefficient

PolynomialChain

coefficientPolynomial

bool useCoefficientPolynomial

Polynomial

Chain

vector<Polynomial>

polynomials

int operation // MIN or MAX

Variable

Power

String variable

Rational power

 Since polynomial expressions encompass integral

expressions, it made sense to move the underlying structure of the

timing analyzer away from integers and to polynomials. The

existing polynomial data structure presented two obstacles that

had to be overcome before this could occur. First, the comparison

functionality was limited to equality. Two polynomials were

considered equal only if they were exact copies of each other.

Altering the order of terms or variables within terms would result

in polynomials being considered unequal. The timing analyzer

naturally requires all of the inequality operators for appropriate

control flow. The second limitation of the polynomial data

structure was that all mathematical operations require special

function calls. None of these functions considered polynomial

chains. When a branch is found in a parametric program, the

timing analyzer must return a Max(…) expression representing

the WCET of the timing node. The mathematical functions would

perform the operation on the first polynomial and ignore other

polynomials in the Max expression.

 The PolynomialChain class allows both minimum and

maximum expressions. One reason for this functionality is

completeness – the polynomial class as a whole was designed to

be stand-alone. But the primary reason is actually the timing

analysis algorithm. Although one normally thinks of WCET as a

maximum of several possible values (see Table 3), intermediate

steps require calculating a minimum. Thus, it is possible to find a

Min(…) expression as part of the WCET.

 The new polynomial class would have the following

requirements. It would provide comparable performance for

operations involving constants. While some overhead is

unavoidable, representing an integer as a polynomial must not

noticeably degrade performance. Mathematical operations on

polynomials would also have to be more efficient than the

previous implementation. Finally, all mathematical and

commonly used operators would be overloaded so the class could

easily take the place of integers.

 As the polynomial class was written, classes from C++

standard template library – namely vectors (see Table 1) – were

used to maximize performance. The result is an improved data

structure which achieves the aforementioned goals. The

additional overhead of the polynomial class does not degrade the

performance of the timing analyzer. Even timing the benchmark

Matmult (see Table 2 and Table 3) which has fifteen timing nodes

still completes in less than three seconds on a Sun Ultra 10

workstation. 2 Polynomials may be simplified after each operation

which means successive operations complete more quickly.

 The inequality functions do present a practical limitation

when non-constant expressions are compared. Comparison

between two polynomials is modeled after comparison in Java:

there is a comparison function which returns an integer: zero if the

polynomials are equivalent, a negative number if this polynomial

is less than the specified one, and a positive number otherwise.

The result of some comparisons (e.g. those between polynomials

with multiple variables) cannot be determined. When this is the

case, the comparison function throws a logic exception. The

overloaded operators will catch this exception and return false.

This means the inequality operators no longer represent a closed

relation.

 For example, let poly1 and poly2 be polynomials

containing the values x and y. When the function

poly1.compareTo(poly2) is called, a logic exception is

thrown because the answer is uncertain without knowing the

values of x and y. Because the overloaded operators catch the

exception, poly1 <= poly2 is false as is poly1 > poly2. If

the calling code relies on this comparison to guide program flow,

both conditions must be checked, and a final (else) case may need

to be added for comparisons which cannot be determined.

6. PARAMETRIC TIMING ANALYSIS
 Parametric timing analysis utilizes two distinct segments of

analysis to achieve tight WCET bounds. The first considers

branch constraints of individual paths within a loop. The second

handles the timing of the entire loop and enforces the constraint

information reported by the first.

6.1 Branch Constraint Detection
 The timing analyzer automatically performs branch

constraint detection using the control-flow information reported

by the VPO C compiler [2, 5]. Branch constraint detection in

parametric benchmarks falls into three separate categories:

infeasible paths, effect-based constraints, and the

2 The Sun Ultra 10 workstation used during the test contains an

UltraSPARC IIi processor running at 440 MHz and 256 MB of

memory.

minimum/maximum number of iterations. The amount of

automatic detection in parametric benchmarks is limited by the

control-flow information whereas the amount of control-flow

information reported for numerical benchmarks is considerably

more and allows additional analysis.

 The first part of branch constraint detection finds infeasible

paths within the loop. These infeasible paths are disregarded

during later path and loop analysis. The second considers effect-

based constraints. Effect-based constraints check to see which

paths can or cannot follow each other. The final stage of

propagating branch constraints in parametric benchmarks assigns

a minimum and maximum number of iterations for each path.

The loop analysis algorithm limits the number of times a path may

be executed based on these cumulative results [5].

6.2 WCET Loop Analysis
 The paths of a loop or function are each independently

evaluated. Once the WCET has been established for each path,

the longest path is selected and used in the algorithm abstracted

below [6].

// process loop iterations
iters = 0;

while (iters < N)

{

// process iters while longest path has first miss/hit
do

{

iters = iters + 1;

wcpath = find the longest path;

cycles =

cycles + wcpath->cycles;

} while (iters < N && caching

behavior of wcpath can change);

// process remaining iterations of longest path
if (iters < N)

{

iters_to_do = remaining iterations

of longest path;

cycles = cycles +

(iters_to_do * wcpath->cycles);

iters = iters + iters_to_do;

}

}

Such an algorithm accounts for updates in the instruction cache on

different iterations of a loop. When the outermost while loop

terminates, the variable cycles contains the WCET of the loop.

If parametric timing analysis is being performed, the WCET of

the loop will be a symbolic formula instead of a constant.

 Each loop or function is considered a node in the timing tree.

Nodes are processed in a bottom up manner meaning the timing

bounds of child nodes must be established before the node itself

may be evaluated. A child node is considered a single block

which is inserted into the parent node [11, 16].

7. EXPERIMENTAL PLATFORM
 A graphical automated tester has been designed and

implemented to check the results of the timing analyzer against a

hardware simulator. This program allows the simulated number

of cycles to be compared with the estimation produced by the

timing analyzer: both the simulator and the timing analyzer are

run automatically from the automated tester without receiving any

additional user input. A ratio of the estimated cycles and the

simulated cycles provides immediate feedback on the percent

difference. The automated tester immediately flags as incorrect

benchmarks for which the timing analyzer produces either an

overestimation greater than a specified percentage or any

underestimation. This highly flexible program makes testing the

timing analyzer easier and can identify timing nodes where the

timing analyzer’s output is incorrect. Such functionality

facilitates quick debugging when a mistake in the timing analyzer

is found.

 The graphical tester allows users to vary multiple input

values to the timing analyzer and hardware simulator. A user may

choose any benchmark and the architecture3 (e.g. SPARC) for

running the test. The cache configuration – including the number

of cache lines, cache associatively, the number of bytes per line,

and the miss penalty – may be adjusted. The user may select

appropriate discrete values (powers of two) for the number of

lines, associativity, and the number of bytes per line of cache.

The miss penalty may range from zero to fifty where zero

represents all cache hits. Finally, parametric benchmarks allow

different numbers of loop iterations to be specified. The number

of iterations is used as input to the simulator and to evaluate the

symbolic formula produced by the timing analyzer. In the case of

nested parametric loops, the outermost loop executes for the

specified number of iterations, and all inner loops – regardless of

nesting level – execute for double the number. This ensures both

loops are being timed accurately. A user may also choose to run

all of the benchmarks at once using an identical cache

configuration. Attempting to hand check the timing analyzer for

all of the different dimensions of analysis is impractical. The

automated tester couples the accuracy of a hardware simulator

with the ease of using a GUI application.

 The database tab lists all of the benchmarks that have been

run since starting the automated tester. A glance at the table can

quickly verify the accuracy of the timing analyzer and identify

any benchmarks which may require minor changes to the timing

analyzer. Running the same benchmark with different parameters

will result in multiple instances of the benchmark in the listing.

The exact parameters used to run each benchmark may be viewed

by selecting the appropriate instance of the benchmark. If desired,

a database may be saved for future reference or reopened from a

previous session.

 The simulator tab contains a list of each benchmark which

has been simulated. The majority of time spent checking a

benchmark comes from simulation. The process is sped by saving

the information reported by the simulator when each benchmark is

run. Asking the automated tester to run a benchmark which has

previously been simulated results in rerunning the timing analyzer

and using the saved simulator data. This saved information may

be deleted for one or all of the benchmarks – this results in

simulating each benchmark again.

 Even when the timing analyzer does not produce satisfactory

results, the automated tester can produce a detailed analysis of the

benchmark. Detailed analysis provides the simulated and

3 Different architectures necessitate a separate hardware simulator

for each platform. Benchmarks are compiled for the specified

architecture and run with the appropriate simulator.

estimated number of cycles for every node in the timing tree.

This quickly focuses attention on the problematic loop or

function.

 Figure 4 is a screen shot of the automated tester. On the left

side of the window is the listing of benchmarks. The names of the

benchmarks come from a text file which is opened using the Load

List button. Underneath the Load List button is a check box

labeled “Build section cycles.” This check box is used to generate

detailed analysis from both the hardware simulator and the timing

analyzer. The right side allows the user to modify the

aforementioned testing parameters using sliders and drop down

list boxes. On some architectures (e.g. ones without cache), the

cache specifications will be ignored by both the timing analyzer

and hardware simulator. The Build button runs the currently

selected benchmark (in the left pane), and the Build All button

runs all of the benchmarks using the specified cache

configuration. The text box at the bottom contains the results of

the timing analyzer (estimated cycles) and hardware simulator

(simulated cycles) and the ratio of the two. The ratio provides the

percent difference of the two. In the case of a parametric

benchmark, the symbolic WCET is displayed as well as a cycle

count which is obtained by evaluating the symbolic formula with

the number of iterations specified by the user. The polynomial

evaluation is automatically performed by the automated tester at

runtime.

 Table 2 lists a number of test programs which were chosen to

demonstrate the effectiveness of Emtadel and the enhanced timing

analyzer.

Table 2: Parametric Test Programs

Program Description

Integral Evaluates a double integral over a trapezoidal

region.

Matmult Multiplies two square matrices and stores the

result in a third matrix.

Sprsin Converts an integer matrix into row-indexed

sparse storage mode.

Sumcntmatrix Sums and counts the number of positive and

negative elements in a matrix.

Summatrix Adds two square matrices and stores the result

in a third matrix.

Summinmax Sums the minimum and maximum of the

corresponding elements of two integer

vectors.

 The parametric benchmarks used are identical to numeric

versions except that the limit values of loops are parameters

passed into the function. The main function receives a different

command line argument for each different loop limit. The

argument is a left shift amount which means 20, 21, …, 29 are all

valid numbers of maximum iterations. This approach introduces

the minimum amount of extra code into the benchmark’s source.

We chose these numbers for convenience in testing; the timing

analyzer is not limited to benchmarks which contain an unknown

number of iterations which are powers of two.

Figure 4: Screenshot of Automated Testing Application

 Table 3 shows the results of the benchmark programs. The

column Estimated Cycles gives the execution time predicted by

the timing analyzer. Observed Cycles was obtained by using the

integrated instruction cache and pipeline simulator which received

worst case input data.

 As mentioned in the introduction, all of the benchmarks

listed implicitly contain control-flow information because they

have been parameterized. The timing analyzer performs

additional control-flow constraint analysis on all benchmarks as

previous described in [5]. Had this analysis not been performed,

the benchmark Summinmax (which contains an infeasible path)

would have an additional overestimation of 5 percent. Although

multiple paths exist in each timing node, only the benchmark

Integral reports its final answer as the Max of two distinct

polynomials. In the intermediate steps, the other benchmarks also

calculated a symbolic solution using Max(…) expressions.

Nonetheless, the polynomial data structure was able to determine

in these other cases that one of the polynomials was always larger

than the other. Hence, the smaller polynomial expression has

been subsumed by the larger.

Table 3: Results for Parametric Test Programs

Program Formula n iterations

Observed

Cycles

Estimated

Cycles Ratio

Integral
Max((153/2)n2 – n + (193/2),

(153/2)n2 + (49/2)n + 90)

16 20,026 20,066 1.002

 128 1,256,562 1,256,602 1.000

Matmult 31n3 + 186n2 + 61n + 361 16 175,399 175,929 1.003

 64 8,891,095 8,892,585 1.000

Sprsin 36n2 + 33n + 185 16 9,702 9,929 1.023

 128 592,774 594,233 1.002

Sumcntmatrix 106n2 + 36n + 298 16 27,869 28,010 1.005

 128 1,741,357 1,741,610 1.000

Summatrix 93n2 + 35n + 199 16 24,486 24,567 1.003

128 1,528,310 1,528,391 1.000

Summinmax 16n + 73 16 318 329 1.035

128 2,110 2,121 1.005

8. FUTURE WORK
 Only the first five Bernoulli formulas (through i5) have been

entered into Emtadel. This limit is not a serious as it may first

appear, for the loops in the summation command would all have

to be triangular to cause a problem. Although generalized ways to

calculate the Bernoulli numbers and formulas exist, the difficulty

in converting these automatically into a sequence of polynomial

operations make such a solution both unwieldy and prohibitive.

As mentioned in the introduction, when the number of paths

contained within a timing node exceeds a defined maximum,

control flow can be partitioned and synthetic timing nodes created

[9]. When the timing analyzer encounters five nested triangular

loops, it could create a synthetic section which would be handled

similarly to a function call. Such an approach would overcome

the lack of a generalized Bernoulli formula.

 A polynomial should be able to accept boundary conditions,

and these could aid in inequality operations. The loops

encountered by the timing analyzer would not be executed in the

presence of a negative variable. If a loop iterates from zero to a

negative number (and the loop variable has a positive increment),

the loop is zero-trip. Such bounds checks allow fewer Max(…)

expressions to be generated by the timing analyzer.

9. CONCLUSION
The contributions of this paper are threefold. First, we describe a

generalized procedure for computing summations that represent

the number of iterations of nested loops. This approach can

handle numeric as well as multi-variate quantities and express the

number of iterations in terms of loop invariant parameters.

Second, we significantly enhanced an existing timing tool so that

it represents both the number of iterations as well as the WCET of

code segments in terms of generalized polynomial expressions

rather than simply a numeric number of cycles. We then

enhanced its loop analysis algorithm to take advantage of our new

polynomial representation and accurate loop iteration

computations. The result is that we are now able to statically

bound the WCET for a larger class of benchmarks. Finally, our

tool features a user-friendly interface which a user can utilize to

quickly gain feedback on the results of a desired benchmark.

Using the GUI, the user can vary the parameters of benchmark

testing according to a variety of dimensions, including the choice

of hardware platform and cache configuration, as well as

specifying the number of loop iterations for parametric

benchmarks.

10. ACKNOWLEGEMENTS
This work was supported in part by NSF grants. [The grant

numbers have been removed to facilitate the double-blind review.]

11. REFERENCES
[1] Aydin, H., Melhem, R., Mosse, D., and Mejia-Alvarez, P.,

“Power-Aware Scheduling for Periodic Real-Time Tasks,”

IEEE Transactions on Computers, 53, 5 (May 2004), pp. 584

– 600.

[2] Benitez, M.E., and Davidson, J.W., “A Portable Global

Optimizer and Linker,” Proceedings of the SIGPLAN ’88

Symposium on Programming Language Design and

Implementation, June 1988, pp. 77 – 98.
[3] Bernat, G., Colin, A., and Petters, S. M., “WCET Analysis of

Probabilistic hard Real-Time Systems,” Proceedings of the

23rd IEEE Real-Time Systems Symposium, December 2002,

pp. 279 – 288.

[4] Colin, A., Bernat, G., “Scope-tree: a Program Representation

for Symbolic Worst-Case Execution Time Analysis,”

Proceedings of the 14th Euromicro Conference on Real-Time

Systems, June 2002, pp. 50 – 59.

[5] Previous work by authors.

[6] Previous work by authors.

[7] Kang, D., Crago, S., and Suh, J., “A Fast Resource Synthesis

Technique for Energy-Efficient Real-Time Systems,”

Proceedings of the 23rd IEEE Real-Time Systems Symposium,

December 2002, pp. 225 – 234.

[8] Kirner, R., Wenzel, I., Rieder, B., and Puschner, P., “Using

Measurements as a Complement to Static Worst-Case

Execution Time Analysis,” Intelligent Systems at the Service

of Mankind, 2, December 2005.

[9] Previous work by authors.

[10] Lisper, B., “Fully Automatic, Parametric Worst-Case

Execution Time Analysis,” Proceedings of the 3rd

International Workshop on WCET Analysis, July 2003, pp.

99 – 102.

[11] Previous work by authors.
[12] Pillai, P., and Shin, K., “Real-Time Dynamic Voltage

Scaling for Low-Power Embedded Operating Systems,”

Proceedings of the 18th ACM symposium on Operating

Systems Principles, 2001, pp. 89 – 102.

[13] Sakellariou, R., “Symbolic Evaluation of Sums for

Parallelising Compilers,” Proceedings of the 15th IMACS

World Congress on Scientific Computation, Modeling and

Applied Mathematics, 1997.

[14] Sandberg, C., Ermedahl, A., Gustafsson, J., and Lisper, B.,

“Faster WCET Flow Analysis by Program Slicing,”

Proceedings of the 2006 ACM SIGPLAN/SIGBED

Conference on Language, Compilers, and Tool Support for

Embedded Systems, June 2006, pp. 103 – 112.

[15] Van Engelen, R., Wolters, L., and Cats, G., “Ctadel: A

Generator of Multi-Platform High Performance Codes for

PDE-based Scientific Applications,” Proceedings of the 10th

ACM International Conference on Supercomputing, May

1996, pp. 86 – 93.

[16] Previous work by authors.

[17] Wegener, J., and Mueller, F., “A Comparison of Static

Analysis and Evolutionary Testing for the Verification of

Timing Constraints,” Real-Time Systems, 21, 3 (November

2001), pp. 241 – 268.

[18] Zinner, C., and Kubinger, W., “ROS-DMA: a DMA Double

Buffering Method for Embedded Image Processing with

Resource Optimized Slicing,” Proceedings of the 12th IEEE

Real-Time and Embedded Technology and Applications

Symposium, April 2006, pp. 361 – 372.

