
The Parse Machine

Chris Healy
Department of Computer Science

Furman University

Rationale

• All CS students use a compiler
• Shouldn’t have to wait until 400/500 level course to

see how a compiler works
– “It’s that thing that gives me error msg about my code”

• Concept of “state” already useful, e.g. by the time
students reach CS 2

• My university does not have a compiler course, and
only rarely offers programming languages.

• Classic technique of using parse tables is less
intuitive, and there is no standard notation for how
to go backwards.

What is a parse machine?

• Similar to Deterministic PDA, drawn like an FA
• Parse stack: maintain a history of visited states
• States: determined from all possible positions the

cursor could be in while reading input w.r.t. grammar
– Special states called “Reduce Blocks” tell you to go

backwards.

• Transitions: Go to the next state based on current
terminal or nonterminal in the input.
– Crash/reject if unspecified  “syntax error”
– When you “reduce”, you insert a nonterminal into the

input.

“Reduce”

• One important concept is reducing a nonterminal.
• Once we have read some input, we may have just

finished an important part of the input.
– This happens when the cursor is at the end of the RHS of a

production.
• Example: S  AB A  aaa B  bb
• When we read the string “aaabb”…

– We arrive at aaa • bb. We can reduce the “aaa” to A to
obtain A • bb.

– When we arrive at Abb •, we can reduce the “bb” to B to
obtain AB •.

– Knowing that we just read AB, we can reduce it to S •.

Example

• First example machine that I show my class uses this
grammar.

 S  0A0
 A  1 | 1A

• There are a total of 6 states

– The start state is S  • 0A0
– One state is the accept state

Creating states

State Items Go to state On input(s)

0 S  • 0 A 0 1 0

1 S  0 • A 0
A  • 1
A  • 1 A

2
3
3

A
1
1

2 S  0 A • 0 4 0

3 A  1 •
A  1 • A
A  • 1
A  • 1 A

Reduce
5
3
3

$, 0
A
1
1

4 S  0 A 0 • Accept $

5 A  1 A • Reduce $, 0

Creating states for the example parse machine.

Example with Input

• Suppose we want to parse 0110 with the grammar
S  0A0 and A  1 | 1A.

• The steps in the trace are as follows.
 State Stack Input String Next State

0 • 0 1 1 0 1

0 1 0 • 1 1 0 3

0 1 3 0 1 • 1 0 3

0 1 3 3 0 1 1 1 • 0 Need to backtrack: –1, A

0 1 3 0 1 1 • A 0 5

0 1 3 5 0 1 1 A • 0 Need to backtrack: –2, A

0 1 0 1 1 A • A 0 2

0 1 2 0 1 1 A A • 0 4 (accept state)

Fitting into a course

• Unit on bottom-up parsing takes 1 week
• Currently in our Computational Theory course
• Pre-requiste ideas

– Helpful to know basic phases of compilation: scanning,
parsing, code generation

– Simple CFGs: can motivate with how we define
mathematical expressions to enforce precedence &
associativity

– If desired: CYK algorithm to see if input string can be
generated by grammar. Dynamic programming O(n3).
Motivates need for efficient algorithm.

Outline of lessons

• Assumes 50-minute period
• Day 1

– Running a parse machine. (~20 minutes)
– Goto and reduce actions. The parse stack.
– Introduction to creating parse machine: how to create the

individual states. “Sets of items”
• Day 2

– How to specify “reduce” actions.
– Calculate the First and Follow of a nonterminal.

• Day 3: Extended example, which handles the special
case where a nonterminal can generate ε.

Conclusion

• Can discuss with student what happens with real
compiler
– Hundreds of states…
– Distinction between syntax and semantic errors

• After the unit, can talk about parse table as a
convenient representation for implementation
– Realization that many transitions are not specified!

• Goal is to gain a deeper appreciation of a
programming language as defined by CFG

• Do it early in the curriculum, if you can spare a week
in discrete math or CS 2.

	The Parse Machine
	Rationale
	What is a parse machine?
	“Reduce”
	Example
	Creating states
	Slide Number 7
	Example with Input
	Fitting into a course
	Outline of lessons
	Conclusion

