Chapter 1: Data Storage

- 1.1 Bits and Their Storage
- 1.2 Main Memory
- 1.3 Mass Storage
- 1.4 Representing Information as Bit Patterns
- 1.5 The Binary System
- 1.6 Storing Integers
- 1.7 Storing Fractions (skip for now)
- 1.8 Data Compression (skim)
- 1.9 Communications Errors (skip for now)

- Think of 0 as false and 1 as true
- **Boolean Operation:** An operation that manipulates one or more true/false values
- Specific operations
 - AND
 - -OR
 - XOR (exclusive or)
 - -NOT

Name	Abbr	Factor	SI size
KIIO	ĸ	210 = 1,024	$10^3 = 1,000$
Mega	м	2 ²⁰ = 1,048,576	10° = 1,000,000
Giga	G	2 ³⁰ = 1,073,741,824	$10^9 = 1,000,000,000$
Tera	т	2 ⁴⁰ = 1,099,511,627,776	10 ¹² = 1,000,000,000,000
Peta	Р	2 ⁵⁰ = 1,125,899,906,842,624	10 ¹⁵ = 1,000,000,000,000,000
Exa	E	2 ⁶⁰ = 1,152,921,504,606,846,976	$10^{18} = 1,000,000,000,000,000,000$
Zetta	Z	2 ⁷⁰ = 1,180,591,620,717,411,303,424	$10^{21} = 1,000,000,000,000,000,000,000$
Yotta	Y	2 ⁸⁰ = 1,208,925,819,614,629,174,706,176	$10^{24} = 1,000,000,000,000,000,000,000,000$
• (• t	lo24 lard he o what	Dising! Common usage of bytes, but the "correct" Disk manufacturers & Te nly computing groups th is advertised as a 30 GB about 28 x 2 ³⁰ bytes, and	SI value is 1000 bytes elecommunications are at use SI factors, so drive will actually only a 1 Mbit/s connection

Random Access Memory (RAM):

- Memory in which individual cells can be easily accessed in any order
- Constructed from flip-flop circuits
- Electronic means:
 - Fast
 - Expensive
 - Small
 - Volatile
- Working space for a computer processor

1-19

Flash memory (solid state)

- Solid state = no moving parts
- Non-volatile
- Can store and erase data electronically
- Degrades over time, so unsuitable for RAM (for now), but taking over other types of secondary memory

Lights, Sound, Magic

Representation

- 1. Objective is to store as binary numbers
- 2. Since the information is analog, must use approximation for representation
 - a. Sampling
 - b. Quantizing
- 3. The quality of this approximation depends on
 - 1. Resolution
 - 2. Dynamic range
 - 3. Mode (Grayscale or color)

Grayscale images

Black & white images

- 1) Simplest form: each pixel either 0 (black) or 1 (white)
 - Binary image
 - o 1 bitplane dynamic range
 - Requires little storage space, but only appropriate for images with no shades of gray
- 2) Grayscale images
 - Use range of values for each pixel
 - Range from black to white
 - o Able to represent more intensities
 - o More memory

<u>19</u>

Basic Audio

- Waves of *air pressure* due to vibration
- Wave cycles per second is the *frequency* of sound (measured in *Hertz – 1 cycle per second*)
 - Low frequency == bass, High frequency == piccolo
 - A above middle C is 440 Hz
 - Human Speech less than 4 KHz
 - 4 KHz == 4000 wave cycles per second
 - Pitch of a sound

• Human ear can hear between 20Hz to 20,000 Hz

The traditional decimal system is based on powers of ten.

The Binary system is based on powers of two.

Storing Integers

- **Two's complement notation:** The most popular means of representing integer values
- Excess notation: Another means of representing integer values
- Both can suffer from overflow errors.

Storing Fractions

- Floating-point Notation: Consists of a sign bit, a mantissa field, and an exponent field.
- Related topics include
 - Normalized form
 - Truncation errors

- Lossy versus lossless
- Run-length encoding
- Frequency-dependent encoding (Huffman codes)
- Relative encoding
- Dictionary encoding (Includes adaptive dictionary encoding such as LZW encoding.)

<section-header><section-header><list-item><list-item><list-item><list-item><list-item>

MPEG

- High definition television broadcast
- Video conferencing
- MP3
 - Temporal masking
 - Frequency masking

- Parity bits (even versus odd)
- Checkbytes
- Error correcting codes

Symbol Code A 000000 B 001111 C 010011 D 011100 E 100110 F 101001 G 110101 H 111010
A000000B001111C010011D011100E100110F101001G110101H111010
B 001111 C 010011 D 011100 E 100110 F 101001 G 110101 H 111010
D 011100 E 100110 F 101001 G 110101 H 111010
F 101001 G 110101 H 111010
G 110101 H 111010

Decoding the pattern 010100 using the Hamming code in Figure 1.30

Character	Code	Pattern received	Distance between received pattern and code	
A B C D E F G	0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 0	0 1 0 1 0 0 0 1 0 1 0 0	2 4 3 1 3 5 2	– Smallest distance
Н	111010	0 1 0 1 0 0	4	