Predicting Spam Emails Through Data Mining
Tyler Conn, Jeff Dye, Rahul Isaac - CSC 272 - April 26th, 2015

Introduction

Email has become a ubiquitous technology since its inception in the 90’s as “electronic
mail” - where checking one’s email inbox is perhaps increasingly more commonplace
than checking a physical inbox. However, with its prevalence as a means of
communication, the potential for misuse is also high - mass, unsolicited, fraudulent,
malicious, and occasionally explicit emails are spread through the Internet daily.
Requiring nothing more than a list of emails, spammers can send content en masse
with little to no overhead. These emails are potentially more than just space in an inbox,
they can also be a vector for attack, where unsuspecting users can be phished for
information or open a malicious attachment.

Email providers have since developed systems to combat the flood of spam emails.
More often than not, spam emails can be fairly easily identified from genuine emails by
the human eye (not considering the unsuspecting victims), but these systems look to
detect spam before it ever reaches the user’s consideration. It was our curiosity about
these systems that led us to our topic in the first place: what are the
attributes/characteristics that can be used to classify a spam email from a genuine
email?

Data Description

(https://archive.ics.uci.edu/ml/datasets/Spambase)

Collected by Hewlett-Packards Labs in California , our dataset utilizes numeric
frequencies to classify a given email as spam or not. It contains 4,601 unique instances
and 58 attributes (57 continuous numeric and 1 nominal class label). 1,813 of the
instances are spam (39.4%). Given the nature of the data, each instance contains
numerous missing values as every email will not contain every attribute we are
searching for. These missing values are substituted with with a 0 in the dataset. A
handful of example attributes are included below to exhibit the various attributes we are
analyzing (Table1). word_freq_ WORD is given as the frequency of that word compared
to the total words of the email (100 * number of times the WORD appears in the email/
total number of words in the email). word_freq_ CHAR is achieved using the same
algorithm while looking at total characters in the email. capital_run_length_average is
the average length of uninterrupted capital letters, capital_run_length_longest is the
longest length of continuous capital letters and capital_run_length_total represents the

https://archive.ics.uci.edu/ml/datasets/Spambase

total number of capital letters in the email. The last attribute in the dataset is the only
nominal attribute that denotes whether the email is spam (1) or not (0).

Attribute Type Description

word_freq_your Numeric Frequency of a given word compared to the
- total words in an email.

char_freq_* Numeric Frequency of a given character compared to
T the total characters in an email.

capital_run_length_average Numeric Average length of continuous capital letters.

capital_run_length_longest Numeric Longest length of continuous capital letters.

capital_run_length_total Numeric Total number of capital letters in an email.

spam Nominal Whether the email is classified as spam or

not.
Table 1

Data Preparation

The data preparation involved several steps. We started with our data in a raw text
format, with the column information in a separate text file. We modified the names of the
attributes to match a column format for a csv file, and combined this header with the
data file, to create a Weka supported .csv. We let Weka handle conversion to the .arff
format. We modified the “Spam” attribute to output “Yes” or “No” instead of 1 or O, to
make it less confusing. After this, we split the data into out training and testing sets.
After some quick trials suggested an 80/20 split of training/testing was a good balance.
To do this, we randomized (with seed 42, for reproducibility) the order of instances in
the dataset to mix up pre-existing ordering. We separated the first 80% and last 20%
into different files and verified that there was an appropriate mix of spam and not spam
emails in both datasets.

Since our data was numeric, we could not run classification algorithms like Prism on it,
so a discretized data set was the next natural step. We created both supervised and
unsupervised discretization datasets to complement the numerical one. We also
experimented with removing attributes that we thought would be unproductive, based on
our own knowledge of spam emails. For example, the frequency of the number “85”,
one of the attributes in the dataset, did not match our experience of spam emails. A final

thought was grouping attributes into different categories: word frequencies, letter
frequencies, numeric frequencies.

Apart from our main dataset, which was shadowed to only contain word frequencies,
we’d wanted to also experiment with StringToWordVector in Weka. We found a set of
emails in plaintext from Enron servers and put together a set of 100 instances from
these - 50 spam and 50 not spam, into an .arff file with two attributes: emailString
(string, of course) and spam (nominal, {yes,no}). For the email string attribute, an
email’s contents in plaintext (subject, and body, as they were preprocessed) was first
stripped of each newline and quotation mark, then added it to our .arff between two
quotes. Spam was merely a yes/no according to how the dataset had them separated,
so the string, a comma and the class value were all we needed for each ‘row’ of our
EmailString dataset. Additionally, StringToWordVector will produce an error and quit if
the dataset already has an attribute named as one of the words it found, so some slight
modifications to the attribute names might be in order to allow the filter to go through.

Data Analysis

General Models

To start off our analysis of the data, we decided to run the standard set of classifying
models on our preprocessed training set. In order to obtain the model with the highest
accuracy for classification, we ran ZeroR, OneR, NaiveBayesSimple, NaiveBayes, J48,
and IBk (nearest neighbor). The ZeroR model took none of the attributes into account
and simply made a prediction based on which class attribute had the higher frequency.
OneR used the data to create rules based on one attribute that had the highest
accuracy of classification. NaiveBayes models numeric attributes by a normal
distribution and creates an estimate for classification. The J48 model uses a similar
technique to OneR to create a decision tree that attempts to accurately classify a new
instance. Lastly, IBk looks at an instances nearest (k) neighbors and selects an
appropriate placement for new instances using cross-validation. For all six models we
also ran them with ten fold cross-validation, against the training data, and with the 20%
test data. We also analyzed the confusion matrices from each model. It was important
to note which model produced the smallest number of false positives as getting a real
email sent to spam would be the worst case scenario.

Discretized Models
While creating an unsupervised discretization was straightforward, we had trouble trying
to use supervised discretization. After running the discretization filter on the data, and

performing the 80/20 training/testing split, we found that all the algorithms performed far
too well, with IBk nearing 100% accuracy. We were justifiably skeptical of such good
results and soon realized that because supervised discretization by definition took into
account the class attribute, the training and testing sets were not actually independent
of each other. At first we were unsure how to solve this issue: trying to first split up the
data and then run the discretization filter resulted in incompatible datasets. Eventually
we used meta classifier FilteredClassifier, on algorithms like Prism that needed discrete
values, as well as on J48 and IBk as an alternate approach.

Cost Matrices

While users prefer spam to not appear in their inbox (a false negative), they would
certainly not want personal emails to be classified as spam (a false positive), and
marked for automatic deletion. That is, there is a significant cost difference to the user
between a false positive and false negative, which we would like reflected in our model.
To achieve this, we make use of cost matrices, using the meta classifier,
CostSensitiveClassifier. A cost matrix is simply a matrix whose entries represent the
cost of an item being in that position in the confusion matrix. The main diagonal is filled
with Os as there is no negative cost for a correct classification. The other two positions
refer to the cost of a false positive versus a false negative. Since classifying a personal
email as spam is very costly, we experimented with a higher cost of a false positive.

This is an example of a cost matrix that states that a false positive is 5 times worse than
a false negative.

Linear Regression

The class attribute, if the email is spam or not, is strictly speaking a nominal attribute.
However, it can be treated as numerical, with O representing “Not Spam” and 1
representing “Spam”. Furthermore, since all other attributes are numerical, this is a
natural place for a regression analysis. Using the LinearRegression classifier gives a
line of best fit for the data. In other words, it outputs a linear equation that will give us
the predicted value for the spam attribute, given all other attributes.

The regression formula gives a number, usually between -1 and 2. We specify a cutoff
value, say .50, below which the email is classified as not spam and above which it is
classified as spam. This approach has several advantages over other classification

approaches. There is a natural method to reduce false positives, without using cost
matrices - we can set the cutoff value to a higher number. Furthermore, the output value
contains more information. Rather than a simple yes or no, the output value is
essentially a probability. If the output is 1.3, a false positive is less likely than if the
output is 0.6. Finally, the formula itself provides information: if the regression formula did
not use some attributes, it would suggest that those attributes were not highly
predictive.

StringtoWordVector

We wanted to explore a feature in Weka that we hadn’t used in class quite yet -
StringToWordVector, in order to add another perspective for analysis. One of the
unsupervised filters in the preprocess tab, StringToWordVector is designed for datasets
like our EmailStrings. This filter takes a String attribute and then converts it into a set of
new attributes based on the occurrence of each word. By default, StringToWordVector
will produce a binary output - did this instance contain this word or not? However,
setting the ‘outputWordCounts’ flag produces attributes that are based on the frequency
of each word in a given instance. From there, you can further specify a cap on the
number of words you’d like it to consider, and a minimum frequency as a cutoff, allowing
the user to narrow down resulting attributes and eliminate potentially unwanted word
attributes. This filter is designed to split one string attribute into a new set of attributes
based on the words found, creating an entirely new perspective on the dataset. From
there, one is free to run any of the algorithms on it, we’d specifically chosen J48 to focus
on with EmailStrings with 10-fold cross validation to account for the size of our dataset.
In our eyes, J48 was the most robust choice in algorithm, both for the sake of the
decision trees that it produces and also the ranking of attributes that could be implied
from the branches of the tree itself - on both the occurrence and frequency datasets.

Results

General Models

Our analysis began with the suite of general models - thankfully the holdout split of our
training and test data had a fairly similar distribution of spam versus not spam
instances, shown by our ZeroR results. From there, we tried OneR to see which
attributes stood out as the most identifying of a given instance, we saw that char_freq_!
was chosen - logically, we can see that emails that are overly exclamatory can be
caught as spam. We then removed that attribute and re-ran OneR to get an idea of
which other attributes were effective: Char_freq_$, in terms of how many times an email
references dollar amounts ($1,000,000USD), Capital_run_length_average, in terms of
the length of capital letter runs in an email, and lastly Word_freq_your, where a certain

threshold of direct references to something of yours/your can be seen as a targeted
spam email.The results from NaiveBayesSimple and NaiveBayes were fairly
predictable. We believe that as the algorithm was attempting to obtain the mean and
standard deviation, our numbers were most often 0. This is likely the reasoning behind
its lower accuracies in comparison to the other models. NaiveBayesSimple in particular,
couldn’t even run with 10 fold cross validation due the standard deviation of multiple
attributes resulting in 0. In these tests, IBk was the second most predictive model
behind J48. Its confusion matrix (Table 4) is nearly as accurate as J48 for minimizing
false positives and its accuracies respectable. When run with the training set, we even
reached our highest accuracy (99.92%) although it is not particularly useful as it is
simply grouping the instances against itself.

In terms of pure accuracy, one can see how J48 stands out among the other models.
Looking a bit deeper into the resulting model, we were very pleased with the confusion
matrix it generated compared to the other basic models (Table 3) where it, by virtue of
having a higher accuracy, was able to keep false positives to a minimum. Additionally,
looking at the decision tree generated with J48, we noticed some similarities in terms of
the attributes chosen for high nodes in the tree with OneR, char_freq_!, word_freq_your,
and even the capital_run_length attributes. Notable distinct attributes in the tree were
word_freq_000, where large numbers or sums of money appearing in an email could
indicate spam, word_freq_money/word_freq_free, in which gratuitous references to
money or things for free can definitely appear in spam emails.

Accuracies (%)

Classification Training(Cross Training(Use Test Data
Algorithm Validation) Training Set) (20%)
ZeroR 60.9239 60.9239 59.2834
OneR 77.9891 81.4946 79.2617
NaiveBayesSimple | Error 81.67 82.0457
NaiveBayes 79.4837 79.2391 79.5874
J48 92.07 97.17 94.25
IBk K=1:90.27 K=1:99.92 K=1:91.10
K=3: 89.59 K=3:94.46 K=3: 89.14
K=5: 89.67 K=5: 93.02 K=5: 89.47

Table 2

To discover which model produced the least amount of false positives we observed
each of their confusion matrices. Our top two models for the least false positives are
listed below. After running the J48 model, 144 of the notSpam instances were classified
as Spam and with IBk, 181 of the notSpam were incorrectly classified as Spam. This
puts a significant preference on J48 as it put less real emails in the spam folder.

J48:
Classified as --> Spam NotSpam
Spam 347 28
NotSpam 25 521

Table 3

IBk:
Classified as --> Spam NotSpam
Spam 322 53
NotSpam 29 517

Table 4

Discretized Results
The unsupervised discretization results were very poor, so we quickly discarded the
idea of using this further. The supervised discretization was more successful, with Prism

giving us a respectable 90% accuracy.

Prism with Supervised Discretization:

Classified as --> Spam NotSpam

Spam 347 18

NotSpam 48 484
Table 5

Cost Sensitive Results

We experimented on several cost matrices, and settled on a 5:1 cost of misclassification
of a false positive versus a false negative. While this did not greatly improve the
performance of either IBk or Prism, we had excellent results with J48.

J48:
Classified as --> Spam NotSpam
Spam 297 78
NotSpam 8 538
Table 6

This gave us a 91% overall accuracy, and less than 1% false positives, the best results
of any algorithm we tried.

Linear Regression

The regression formula did not use nine of the attributes in the formula, suggesting that
these were not highly predictive of if the email was spam or not. These were
word_freq_receive, word_freq_people, word_freq_report, word_freq_650,
word_freq_lab, word_freq_857, word_freq_cs, char_freq_[, capital_run_length_longest.
Most of these lined up with our intuition of spam emails. For actual classification, we
tried cutoff values between 0.2 and 0.8. The key attribute we looked for in addition to
accuracy, was the percentage not falsely classified as spam. We found that .5 was a
suitable cutoff, with a 90% accuracy and only about 2% of emails falsely classified as
spam.

Linear Regression Classification with cutoff at 0.5

Classified as --> Spam NotSpam
Spam 302 73
NotSpam 19 527

Cut Off Value vs Accuracy & Not False Positive

Legend

B Accuracy (%)

B ot False Positive (%)

Cut Off Value

StringtoWordVector

In terms of the results of our post-StringFromWordVector'ed dataset, we found that J48
had similar accuracies in classifying on both the occurrence (77%) and the frequency
dataset (74%). With the trees that they produced, money and http were the respective
‘root’ deciding attributes, both seem to be believable in terms of what would make a
spam email stand out: direct references to money or web addresses/links (in excess). In
terms of the comparison to be made between the two types of StringToWordVector
processes, | would’ve thought that frequency would be a better indicator than something
as binary as whether or not the word occurs in the string, but this could very well just be
an outlier case. Additionally, one of the means of visualizations we’d decided upon was
a word cloud for the emailStrings dataset, what is a simple yet effective means of
visualizing said data. Split between the spam and not spam instances, one can fairly
easily see not only the breadth of the terms in play, but also relative frequency - tied to
the size of a given term. With this visualization, we found some similarities in the spam
terms between those that appeared in our general models and what appeared largest in
the word clouds - money, free, 000, your, all in addition to a few classic spam terms -
viagra, security, receive, and cash, just to name a few.

5 3
5355 o
[sies bumble siesmss te mn.—am
o 20 iewideas STl E-..-nnwms__,__e :
T - === rEUIEWidea wesn dun “Mm
viagra c - = -..-—-ﬂ-‘-av qﬂ—_-—ﬂw.—mm payie £5s = o 1
: ansfer = 20 Mg o 55 %.%@.WMQ A weid .&vv_u.m._ g
> IriendEtimes tr et S A o Ssionfe, # = lorm 306y
%lu n—__ﬂ, .f._nj,nﬂ“\.__.,__,_,___,_r 1106 19€) " 500 %muw G 38 .@\r wn_jes ..la@ ,0 %ﬂﬂ—_ﬂﬂ——-ﬂ—-—” _3;&Vm
& womn statements R Eiag m%@.==_=n=_n«w§ﬁ _m
oy BHBAI ;7S E=8 %, 8 £:E B85 2 N siionsenh. %, S
A N2EEY, ®s EEE =22 SNV slio] HU:%, 5
%%s_we&%«m“%@ i £y m“."_;%@m.%.omm%wnm
Sforward < é\\sk\/@.___.___.__.ﬁ_.__ =5 S QUIEN, . e RO g
LN ONs > Maine < 28 82539 SN 0,8 v 28
@ Uil () .v& may«e wm £ o 5 m.ﬂm_/Q__,._Jﬂv# o Q\ £ a0 »&%__em_
e 992 G5 o SN ___n..&ée__s,
000 & 995 Y e NN EE = S2Q Know ot 059 ¢, el
% AV 0 . le Q s= l\\ j _ % + ..m .Iungum g H~=°_ _ 3 %@0 Q&s,_s__ H————m
S Wéo =7 0= ‘.M.\eaé QQ 10e - 8 2., Kn o _-...!.0 ’.0/.__@_;
nEz % S 225 ZNddns RN TR :
eSOLE, -] Shitpge 233 Q1o S S om.. 3, Spen;
RN - GGHMmazn 88 5°s¢ e SI0F D noi NV e
o S & S8t EgE- Biss MR T PR Blist'= Y|
MOl 'Y m.lmd m-m%mw.m g £ES "GPy iz M o 27208 i
| — > .._H 2 0 & m& av 0 _m
‘m—.—’W—-%k.nm$,—-—-—. 4 = emm o 52 ? %mﬂ—_-ﬂ—-’m 0 S mid =
5, 53 81 35 & e Rep; & b= NI rax ST 1 exhibit
@\@mﬂ.ns.@w S 0. £ 83,8 2 R ABLLIO 1 exnibit
; g~y S2 e o s % Ew 2Bl = o 28
lIke %2, %S 'm0 s WAIL 4o e, s 558 mo. S T P 1
SR - GOM= wuse= S e X E S Ly |.(/,\0@ = © B S SE
SN =i o2 2 Ogr £ s 88 § I %H.ml&a@@% 0K & R
wo é ==m-=“/“mr.\%@0 “J&&/\/g o > ml ml o .ft% &EE_; a& /;/[\ ——__ﬁlgm é\o ﬂv& m-u"-—n
S ot oJmmgsgs 9 e aas T s nce'> 78
S EE A\\,\anfo $o o oMl SESE S o $Esince s & ager
7 D475 ® o S 2 2 = o = S3INn o IUNon6 > man A
£ %mm%\\v@mmmnw%%_a B35% % Hma___._._,m_;_%.@__wi____..__m_._..u_.ﬁ_____,..,.
o @&.&.3__@&/@ == 8y “aia 3258 G oms L ozoin. luenonpel
m @@.. __._.@Q.mo h._._T__w_)M%me_.u_____.e__w_eue sgts gom'l
Mo unj s auo t.-
S goiieon e, % B e
[o R
wn

Conclusion

Looking at our results as a whole, though we found the most success with our
cost-sensitive J48, there are still several limitations and shortcomings in our results that
we need to address. Linear Regression too provided a useful tool that gave us a rough
probability of an email being spam. All of the various attributes from characters, words,
or capital run lengths were of value to modeling our data. Some standout attributes
included, word_frequency_money, char_freq_!, and any of the capital_run_length
attributes. Our dataset being strictly numerical did not give us certain information that
we believe would have been useful. This includes the frequencies of misspelled words,
grammatical errors, broken english, or even characters replaced with a non-english
‘equivalent’ (sexual vs S.E.X.U.A.L, with decoy characters between each major
character). While this dataset was limiting, it also mitigates privacy concerns from the
owners of the emails by shadowing the dataset to word/character frequencies, as no
actual text is mined by us. Email is, to this day still one of the primary means of
communication, but the potential for malicious applications exist. Filters work to protect
the end user by learning from both spam and non-spam emails - in effect learning from
human behavior with email in general.

Appendix
Dataset: https://archive.ics.uci.edu/ml/datasets/Spambase

Enron Emails: http://www.aueb.gr/users/ion/data/enron-spam/
Word Cloud Generator:

https://www.jasondavies.com/wordcloud/#%2F %2Fwww.jasondavies.com%2Fwordclou
d%2Fabout%2F

Background: http://www.quora.com/Why-are-email-scams-written-in-broken-English
Academic Reference: http://research.microsoft.com/pubs/167719/\WhyFromNigeria.pdf

https://archive.ics.uci.edu/ml/datasets/Spambase
http://www.aueb.gr/users/ion/data/enron-spam/
https://www.jasondavies.com/wordcloud/#%2F%2Fwww.jasondavies.com%2Fwordcloud%2Fabout%2F
https://www.jasondavies.com/wordcloud/#%2F%2Fwww.jasondavies.com%2Fwordcloud%2Fabout%2F
http://www.quora.com/Why-are-email-scams-written-in-broken-English
http://research.microsoft.com/pubs/167719/WhyFromNigeria.pdf

