
1 

Predicting Baseball Winners from 
Season Average Data 
By Austin Chewning, Cameron Grondines, and Zack Miller 

Introduction 

Major League Baseball is widely considered America’s pastime, and is a statistics 
heavy sport. In this project, we take advantage of a small fraction of that data to 
investigate the correlation between the winner of games and average team 
characteristics. There is a large amount of data that we were able to find, and much of it 
is free to use. This was greatly helpful in creating the dataset that we use in our 
analysis. We have two sources of data, Retrosheet and the Lahman Baseball Database. 
Retrosheet is utilized for individual game data, and the Lahman Baseball Database is 
used for season average statistics. We combine the two datasets for the years 2006-
2016 such that our final dataset on which we will run our learning algorithms includes 
only the home team season average statistics, the away team season average 
statistics, and a class attribute of if the home team won the game. We included all of the 
non-identifier statistics available from the Lahman Baseball Database and used various 
attribute selection techniques to remove non-predictive attributes. This process will be 
discussed in the data preparation and data analysis sections. Because all of our 
attributes are numeric, we have two versions of this dataset. One is nominal where our 
class attribute is ‘1’ = home win and ‘0’ = home loss. The other is a fully numeric dataset 
where our interpretation is that the numeric prediction is the percentage chance of a 
home win. For all of the games in our dataset, we have either a 100% or 0% chance of 
the home team winning since the outcome of each game is known.  
 
In our data analysis we find a baseline of 54.6% accuracy using ZeroR on our nominal 
dataset. This will be the number on which any learning scheme has to significantly 
improve. We find that using our numeric dataset, we have a correlation coefficient of 
0.1284 using the simple linear regression algorithm. Upon further analysis, we find that 
it is difficult to improve upon these values by a large margin. We believe this to be 
because our dataset is inherently noisy. For example in the 2017 season (not available 
for this analysis) the New York Yankees faced the World Series Champion Houston 
Astros at home a total of seven times and won four of those matchups 
(http://mcubed.net/mlb/nyy/hou.shtml). In our dataset, each of these matchups would be 
a separate instance with identical season average data but four have the Yankees 
winning and three have the Astros winning. Further analysis of this and other issues we 
face is found in the results section.  



2 

Dataset Description 

Our dataset is sourced from two baseball statistics repositories, Retrosheet and the 
Lahman Baseball Database. This section describes each dataset and the steps we took 
to combine them into the dataset used in our analysis. 
 
Retrosheet 
Our Retrosheet data includes 26,725 games from the 2006-2016 seasons. (The 
information used here was obtained free of charge from and is copyrighted by 
Retrosheet. Interested parties may contact Retrosheet at "www.retrosheet.org") This 
CSV dataset includes a total of 161 attributes that describe nearly every aspect of a 
single game. Many of these are not predictive on our project such as the umpiring crew 
or the attendance of the game. Others such as hits, doubles, triples, home runs, runs 
batted in, and many others encode the winner of the game too closely for the analysis 
that we want to perform. In many ways, using the number of hits, for example, to predict 
the winner in a new matchup would be overfitting. Therefore, we made the decision to 
overlay season average data with the attribute named Game_HomeWin that we derived 
from the Retrosheet game data by comparing the home and away team scores. In order 
to combine the datasets, we cleaned the game logs so that an instance takes the form 
of the instance shown in Table 1. 
 
Table 1 

Year Game_HomeTeam Game_AwayTeam Game_HomeWin 

2016 Tex Hou 0 

This instance represents one of the 2016 season games where the Texas Rangers 
faced the Houston Astros and the Rangers lost at home. We have an instance for each 
of the 26,725 games played in the 2006-2016 seasons.  
 
Lahman Baseball Database 
Our overlay data comes to us courtesy of the Lahman Baseball Database, of which we 
are using only a small fraction. The full database includes every player for each team for 
years dating back to the 1870’s. We are using a table of season average data for each 
team over the 2006-2016 seasons that we are investigating. Some of the 48 attributes 
from the Lahman Baseball Database are identifiers for each team or are links to some 
of the other data tables included in the database. We are not using those attributes and 
will discuss further in the data preparation section. The other attributes are batting, 
pitching, and fielding statistics over the entire season. Table 2 lists all of the attributes in 
the Lahman Baseball Database along with their description and type. 
 
 



3 

Table 2 

Attribute Description Type 

yearID Year Numeric 

lgID League Nominal 

teamID Team Nominal 

franchID Franchise Nominal 

DivID Team’s Division Nominal 

Rank Position in final standings Numeric 

G Games played Numeric 

GHome Games played at home Numeric 

W Wins Numeric 

L Losses Numeric 

DivWin Division Winner Nominal 

WCWin Wild card Winner Nominal 

LgWin League champion Nominal 

WSWin World Series winner Nominal 

R Runs scored Numeric 

AB At bats Numeric 

H Hits by batters Numeric 

2B Doubles Numeric 

3B Triplies  Numeric 

HR Home runs by batters  Numeric 

BB Walks by batters Numeric 

SB Strikeouts by batters Numeric 

CS Caught stealing Numeric 

HBP Batters hit by pitch Numeric 

SF Sacrifice flies Numeric 

RA Opponents runs scored  Numeric 

ER Earned runs allowed  Numeric 

ERA Earned runs allowed Numeric 



4 

CG Complete games Numeric 

SHO Shutouts Numeric 

SV Saves Numeric 

IPOuts Outs Pitched (innings pitched x3) Numeric 

HA Hits allowed Numeric 

HRA Homeruns allowed Numeric 

BBA Walks allowed Numeric 

SOA Strikeouts by pitchers Numeric 

E Errors Numeric 

DP Double plays  Numeric 

FP Fielding percentage Numeric 

name Team’s full name Nominal 

park Name of team’s home ballpark Nominal 

attendance Home attendance total Numeric 

BPF Three-year park factor for batters Numeric 

PPF Three-year park factor for pitchers Numeric 

teamIDBR Team ID used by Baseball Reference 
website 

Nominal 

TeamIDlahman45 Team ID used in Lahman database 
version 4.5 

Nominal 

teamIDretro  Team ID used by Retrosheet Nominal 

 
Overlaid Dataset 
With much help from Dr. Treu, we used a SQL query to combine the Retrosheet game 
data with the season average statistics for the home and away team. The game log that 
looks like the instance in Table 1 includes three important pieces of information that we 
used to match each game with the correct season average statistics. The HomeTeam 
and AwayTeam attributes are included in the Lahman Baseball Database under the 
attribute teamIDretro. So we use the SQL query, 
 

select * from (2016Games INNER JOIN TeamAvg on 
2016Games.HomeTeam=TeamAvg.teamIDretro and yearID=2016) AS XYZ 
INNER JOIN TeamAvg on XYZ, 

 



5 

to create a new instance that has (in order) the home team’s season average statistics, 
the away team’s season average statistics, and the information shown in Table 1 for 
each game. This new dataset has 100 attributes with a large number of identification 
attributes. These are removed so that we only have the numeric statistics for each team 
and the class attribute in its numeric form. Attributes removed include: yearID, leagueID, 
teamIDs, franchiseID, divisionWin, wcwWin, leagueWin, worldSeriesWin, ballpark 
information, year, Game_HomeTeam, and Game_AwayTeam. We are left with a total of 
65 attributes once these are removed. We utilized Weka’s CSV converter to create an 
ARFF file from our CSV. 

Data Preparation 

Our data preparation was fairly simple because we were dealing with all numeric 
attributes, no missing values, and the summary of each attribute in Weka demonstrated 
that we did not have any egregious outliers. As discussed in the previous section, we 
removed the unique identifiers in our dataset. Our data sources are reputable in the 
baseball statistics realm, so we are considering their data to be correct as given. On our 
fully numeric dataset, we normalized each attribute on a 0-1 scale. This is the base that 
we work on for any further analysis. Therefore, we split our data into test and training 
datasets. Since we have such a large amount of data, we decided to use a 90/10 split of 
our data where a randomized 90% is saved as the training data, and the remaining 10% 
is reserved as test data. We performed this split using Weka’s randomize filter on the 
full dataset and then the remove percentage filter. At this point, we created a nominal 
version of both training and test datasets by changing the GameHomeWin attribute from 
numeric to having possibilities ‘1’ and ‘0’ where ‘1’ = HomeWin and ‘0’ = HomeLoss in a 
third and fourth ARFF file.  

Data Analysis and Results 

In our data analysis, we look at both the nominal and the numeric datasets in order to 
compare the results we get from each. Weka’s attribute selection meta-learners are 
used in an attempt to find a more predictive set of attributes. 
 
Nominal Dataset 
We began our analysis on the nominal dataset with ZeroR which picks the class 
attribute value that occurs the most often and uses that value to predict all new 
instances. In our case it would be whether the home team won or lost. Using this we 
were able to get a baseline accuracy of 54.6% which we compare to our new models to 
see if we obtainin a higher accuracy. This result is shown in the distribution of the two 
classes shown in Figure 1. This also confirms for us that our data is well balanced 
between home win and home loss class attributes. 



6 

 
Figure 1

 
 

 
The next algorithm that we ran was OneR which creates a rule based on one attribute 
for predicting the class attribute value of new instances. We ran this algorithm with four 
different bucket sizes to see how our accuracy would change which can be seen in the 
Table 3 below. The best accuracy we obtained from running OneR was 57.4% using a 
minimum bucket size of 500.  
 
Table 3 

Bucket Size Accuracy 

10 56.6% 

100 56.8% 

500 57.4% 

1000 56.9% 

 
The next algorithm that we ran was J48 which is a tree building algorithm that builds a 
decision tree by splitting on the most predictive attributes at each level. Using this 
algorithm we obtained an accuracy of 56.4%.  
 
Next we ran a Sequential Minimal Optimization (SMO) algorithm which breaks down a 
large quadratic programing problem into smaller quadratic programing problems. These 
problems are then solved analytically making the memory required linear with respect to 
the training set size allowing the use of much larger training sets such as ours. The goal 
of this algorithm is to find a hyperplane that divides the data into two classes, perfect for 
our application. This algorithm produces a model that gives us a 58.2% accuracy. This 
model is shown in the appendix and the confusion matrix below in Table 4. 
 
Table 4 
SMO Confusion Matrix 



7 

 Predicted Home Team 
Loss 

Predicted Home Team Win 

Home Team Loss 1056 403 

Home Team Win 713 500 

 
 
We use two Naive Bayes algorithms which predict the probability of a new instance 
based on probabilities obtained from training instances while assuming all attributes are 
independent. Using the normal Naive Bayes algorithm, we obtained a 56.7% accuracy 
when evaluating the model. We then ran the Naive Bayes Multinomial algorithm which 
runs the naive bayes algorithm with the assumption that distributions are multinomial 
and not some other distribution. With this algorithm we got an accuracy of 58.1%. The 
entire model is shown in the appendix and the confusion matrix in Table 5. 
 
Table 5 
Multinomial Naive Bayes Confusion Matrix 

 Predicted Home Team 
Loss 

Predicted Home Team Win 

Home Team Loss 1153 306 

Home Team Win 813 400 

 
In an effort to improve these results we used the meta-learner Attribute Selected 
Classifier and ran OneR and the Naive Bayes algorithms, and the SMO algorithms 
again to see what could be learned. These algorithms were chosen because they gave 
the best accuracies thus far in our analysis. We used the Correlation-based Feature 
Subset (CFS) selection which evaluates the worth of a subset of attributes by 
considering the individual predictive ability of each feature along with the degree of 
redundancy between them to select attributes. When we ran OneR with a minimum 
bucket size of 500 (based on our testing shown in Table 3) using the CFS attribute 
selection we obtained the same accuracy of 57.4%. Using the Correlation Attribute 
Evaluator for attribute selection and the OneR Attribute Evaluator gave an accuracy of 
56.9%. We then ran Naive Bayes using the CFS evaluator to remove attributes and got 
a new accuracy of 56.3%. The Naive Bayes Multinomial algorithm, also using the CFS 
evaluator to remove attributes and got a new accuracy of 57.6%. Lastly, the SMO 
algorithm in conjunction with the CFS evaluator gives an accuracy of 58.1%. 



8 

 
Numeric Dataset 
We begin our analysis on the numeric dataset using the Simple Linear Regression 
algorithm which forms a baseline prediction by producing a model that is a function of 
one input attribute. This model gave us a correlation coefficient of 0.1284. We then ran 
the linear regression algorithm which produces a model that is a function of multiple 
input attributes. This model gave another disappointing correlation coefficient of 0.1526. 
Since our model performed so poorly, we plotted the relationship of the most predictive 
attribute from OneR, Away Wins, and the results are shown in Figure 2. We can 
immediately see that there is not a linear relationship between our data and the change 
of the home team winning. Similar analysis with other attributes shows the same 
pattern, no linear correlation. Therefore, we decided to discontinue our numeric 
estimation. 
 
Figure 2 

 
 
Results 
We find that our data is unable to reliably predict the winner of a baseball game, given 
the season average statistics of the teams playing. However, there are some interesting 
takeaways from our analysis. While it is not a particularly strong predictor, it is 
interesting that a team’s ability to win games on the road is most closely tied to the 
winner of a game. This is shown in our results using OneR. In the most predictive OneR 
model, the rule generated was: 
 



9 

if Away_W<0.4519229 then Game_HomeWin=1, if Away_W>0.4519229 then 
Game_HomeWin=0.  

 
This is also notable because our data is skewed slightly towards the home team losing. 
 
The SMO algorithm produces nearly the same accuracy of the Multinomial Naive-Bayes 
algorithm. However, it more evenly distributes the false positives and false negatives 
compared to the Multinomial Naive-Bayes. This makes some intuitive sense because it 
is built as an algorithm to classify binary data like ours. In general, false positives and 
false negatives are equally undesired in our models so this does not make the SMO a 
better algorithm, necessarily. 
 
In general, our model suffers greatly from the noise demonstrated by Figure 2. Since 
team’s face each other more than once over the course of a season, while the season 
average statistics remain the same for each matchup, the winner of the game has a 
high potential to be split somewhat evenly between the two teams. A possible way to 
mitigate this issue that was not tested would be to compile the results of their games so 
that each instance is the season average statistics for each team and the class attribute 
is either the team that is more likely to win a new game or the percentage chance of one 
of the teams winning. 

Conclusion 

The main purpose of this project was to see if we could predict the winner of a 
Major League Baseball game given Retrosheet’s game data and Lahman’s Baseball 
Database season average statistics. In the preprocessing stage we combined these two 
datasets to create a dataset that lined up each game being played with the two teams 
seasonal averages. We then created two versions of this dataset, one with nominal 
values and one with numeric values. With this newly created datasets we ran both 
classification and numeric estimation algorithms on the nominal and numeric datasets, 
respectively.  

Overall, many of the classification algorithms only beat a coin flip and our ZeroR 
baseline by a few digits and the numeric estimation algorithms produced poor 
correlation coefficients. The poor correlation coefficients along with data visualization 
lead us to realize that our data is nonlinear. The best model we were able to create was 
with using the Sequential Minimal Optimization algorithm. With this model it produced, 
we get an accuracy of 58.2%. We discovered that baseball is a very tough sport to try to 
predict, mainly because there is no one attribute that will determine whether a team will 
win or not out of the season average data. After conducting these tests with the dataset 
we created we hypothesize that better results may be yielded by utilizing the averages 
of individual players rather than the season averages of the teams. For example, the 



10 

individual matchups of pitchers and batters may have a larger predictive value than the 
average tendencies of a team’s bullpen and their opponent’s hitters.  

  



11 

Appendix 

Sequential Minimal Optimization Model 

-0.0553 * (normalized) Home_Rank 
 +      -0.2836 * (normalized) Home_G 
 +       0.1629 * (normalized) Home_GHome_ 
 +       0.6159 * (normalized) Home_W 
 +      -0.6247 * (normalized) Home_L 
 +       0.2654 * (normalized) Home_R 
 +       1.1674 * (normalized) Home_AB 
 +      -0.5241 * (normalized) Home_H 
 +       0.0377 * (normalized) Home_2B 
 +      -0.0991 * (normalized) Home_3B 
 +      -0.2096 * (normalized) Home_HR 
 +       0.2174 * (normalized) Home_BB 
 +       0.0048 * (normalized) Home_SO 
 +       0.2784 * (normalized) Home_SB 
 +       0.0924 * (normalized) Home_CS 
 +       0.1078 * (normalized) Home_HBP 
 +      -0.0331 * (normalized) Home_SF 
 +      -0.536  * (normalized) Home_RA 
 +       0.1547 * (normalized) Home_ER 
 +       0.3057 * (normalized) Home_ERA 
 +       0.0999 * (normalized) Home_CG 
 +       0.1326 * (normalized) Home_SHO 
 +       0.6803 * (normalized) Home_SV 
 +      -0.1059 * (normalized) IHome_Pouts 
 +      -0.2017 * (normalized) Home_HA 
 +       0.2707 * (normalized) Home_HRA 
 +      -0.1628 * (normalized) Home_BBA 
 +      -0.0246 * (normalized) Home_SOA 
 +       0.3492 * (normalized) Home_E 
 +       0.0528 * (normalized) Home_DP 
 +       0.1797 * (normalized) Home_FP 
 +      -0.8344 * (normalized) Home_BPF 
 +       0.6528 * (normalized) Home_PPF 
 +       0.2831 * (normalized) Away_Rank 
 +      -0.3254 * (normalized) Away_G 
 +       0.2235 * (normalized) Away_Ghome 
 +      -1.4518 * (normalized) Away_W 
 +       1.3271 * (normalized) Away_L 
 +       0.3848 * (normalized) Away_R 
 +       0.3407 * (normalized) Away_AB 
 +      -0.0544 * (normalized) Away_H 
 +       0.2154 * (normalized) Away_2B 
 +       0.0535 * (normalized) Away_3B 
 +      -0.3536 * (normalized) Away_HR 
 +       0.1559 * (normalized) Away_BB 
 +       0.2932 * (normalized) Away_SO 
 +       0.1127 * (normalized) Away_SB 
 +      -0.0375 * (normalized) Away_CS 
 +       0.1323 * (normalized) Away_HBP 



12 

 +      -0.2313 * (normalized) Away_SF 
 +       0.7364 * (normalized) Away_RA 
 +      -0.1411 * (normalized) Away_ER 
 +      -0.4361 * (normalized) Away_ERA 
 +       0.1085 * (normalized) Away_CG 
 +       0.1304 * (normalized) Away_SHO 
 +       0.6559 * (normalized) Away_SV 
 +       0.3111 * (normalized) Away_IPouts 
 +      -0.1002 * (normalized) Away_HA 
 +       0.0014 * (normalized) Away_HRA 
 +      -0.3474 * (normalized) Away_BBA 
 +       0.2155 * (normalized) Away_SOA 
 +      -0.4612 * (normalized) Away_E 
 +       0.0575 * (normalized) Away_DP 
 +      -0.4312 * (normalized) Away_FP 
 -       1.5957 

 

 

Multinomial Naive Bayes Model 

The independent probability of a class 
-------------------------------------- 
0 0.5403866140095615 
1 0.4596133859904386 
The probability of a word given the class 
----------------------------------------- 
   0   1  
Home_Rank  0.015233970738079026 0.012835093007382501  
Home_G  0.017016208968340118 0.017069497917592498  
Home_GHome_  0.01752840847205262 0.017541399604571562  
Home_W  0.019428433739428985 0.021344358182958  
Home_L   0.016081611269661292 0.014171563051059254  
Home_R   0.01563610016635965 0.01637731570895863  
Home_AB  0.01818407735794917 0.018585766634534092  
Home_H   0.01769262365911398 0.01820972282437688  
Home_2B  0.014667544047257964 0.014982550633538788  
Home_3B  0.016146461605691213 0.016112372206472502  
Home_HR  0.014952179460788197 0.015527945923255812  
Home_BB  0.014817747638778135 0.01542595365689034  
Home_SO  0.016612000126860062 0.016431669356611358  
Home_SB  0.0147191578990608 0.01481499696631549  
Home_CS  0.013360444022987254 0.01318454539343982  
Home_HBP  0.012673702078663458 0.013064507138839745  
Home_SF  0.013997737410515184 0.014396447802445544  
Home_RA  0.015843167426666555 0.014677356730627833  
Home_ER  0.01603157157138938 0.01491090470265902  
Home_ERA  0.015877276255227144 0.014717376509314007  
Home_CG  0.008386218669748088 0.008669189287265438  
Home_SHO  0.013035834975396158 0.013925372251836897  
Home_SV  0.01388284958642702 0.015023226762463888  



13 

Home_IPouts  0.01448470566642443 0.015387188707952384  
Home_HA  0.020968116853702954 0.020091521637095863  
Home_HRA  0.014695463691056274 0.014217883296938924  
Home_BBA  0.0164634109758948 0.015665939395701704  
Home_SOA  0.015098378140089746 0.015891883806520107  
Home_E   0.017579545331653172 0.01697896652492399  
Home_DP  0.019143583494232237 0.018754779676301812  
Home_FP  0.016929059840010183 0.017529141992237852  
Home_BPF  0.013312765674043244 0.013380580487959199  
Home_PPF  0.012990089527116364 0.012873796993601833  
Away_Rank  0.013030249939094673 0.015513334251904261  
Away_G   0.017131183353261328 0.01697575311845464  
Away_Ghome  0.01752570320052326 0.01750750316943189  
Away_W   0.021174483560203076 0.019213283569499667  
Away_L   0.01437207836589183 0.01626021075772416  
Away_R   0.016352047784908508 0.015481737881955848  
Away_AB  0.01837250035576572 0.018298097822908546  
Away_H   0.018142268126721997 0.017611700710696714  
Away_2B  0.014932816697665796 0.014631698116473234  
Away_3B  0.01608965082782689 0.016173727955062993  
Away_HR  0.015538769085049916 0.01477465632301555  
Away_BB  0.015454108589455038 0.014636060475090007  
Away_SO  0.016384610532625115 0.01673401989714239  
Away_SB  0.014809538229630605 0.01477012155341337  
Away_CS  0.013236400558678753 0.013372503512332662  
Away_HBP  0.013015270088800232 0.012678880102934564  
Away_SF  0.014388086739160009 0.013894621717377742  
Away_RA  0.014855079307559067 0.015888058894781364  
Away_ER  0.015082937531976422 0.01606394057984834  
Away_ERA  0.01491061285527148 0.015893651261429866  
Away_CG  0.008661405842716748 0.008344701487598012  
Away_SHO  0.01377965845549748 0.013035439177347381  
Away_SV  0.014786606304503704 0.013908806064979205  
Away_IPouts  0.015092517075990537 0.014632781409127875  
Away_HA  0.020221593850791378 0.021002892437497478  
Away_HRA  0.014266276136922695 0.014731939824237447  
Away_BBA  0.015831067552155343 0.016443380306476442  
Away_SOA  0.01567914278056678 0.015151616042105001  
Away_E   0.01707891670395409 0.017625700209442863  
Away_DP  0.01887467856764529 0.019120192143012027  
Away_FP  0.017459294658586203 0.0168581744540943  
 
Time taken to build model: 0.05 seconds 
=== Evaluation on test set === 
Time taken to test model on supplied test set: 0.1 seconds 
 
=== Summary === 
Correctly Classified Instances        1553               58.1213 % 
Incorrectly Classified Instances      1119               41.8787 % 
Kappa statistic                          0.1244 
Mean absolute error                      0.4863 
Root mean squared error                  0.4919 
Relative absolute error                 97.9852 % 
Root relative squared error             98.7877 % 



14 

Total Number of Instances             2672      
 
=== Detailed Accuracy By Class === 
                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 
                 0.790    0.670    0.586      0.790    0.673      0.136    0.593     0.625     0 
                 0.330    0.210    0.567      0.330    0.417      0.136    0.593     0.527     1 
Weighted Avg.    0.581    0.461    0.577      0.581    0.557      0.136    0.593     0.580 

References 

 
Lahman’s Dataset: 
http://www.seanlahman.com/baseball-archive/statistics/ 
 
Retrosheet Dataset: 
http://www.retrosheet.org/gamelogs/index.html 
 
Yankees-Astros Match-ups 
http://mcubed.net/mlb/nyy/hou.shtml 
 


