
Resume Qualities that Receive a Callback
Anna Donnell, Ashlyn Goila, and Kali Javetski

I. Introduction

Waiting for a job callback can be incredibly stressful due to the uncertainty it brings.

Each passing moment feels like an eternity as you anxiously anticipate whether your efforts have

paid off. The waiting period often leads to overthinking and second-guessing, as you wonder if

you made the right impression or have the right qualities listed on your resume. The stakes feel

high, especially if you're eager for a career change or in need of employment, adding to the

pressure and anxiety of the situation. As a result, we wanted to discover the most valued qualities

of an applicant that determine whether or not they receive a call back.

The initial goal of our model was to use classification learning to analyze which instances

get call backs and their key attributes. Since our dataset involves jobs across only two cities,

Chicago and Boston, we wondered if we could use one of the city’s data to build a good model

for the other city. By using one city’s data for training and the other for testing, we can learn if

our model is able to generalize across major cities or if each city has specific trends in resume

attributes. In addition, our biggest concern or challenge with using this dataset was with how we

were going to handle the unbalanced data.

II. Data Description

Our data set is from Kaggle, and it is called “Key Resume Attributes Impacting Job

Callbacks.” The set is made up of 4870 instances and 30 attributes. The attributes provide

information on specific jobs, on people’s resumes, and on people’s demographics. It is important

to note that some of the demographic attributes are influenced by the person’s name, so it is not

necessarily an absolute fact. We will keep this in mind and discuss the raised ethical concerns

later. Most attributes are nominal including those that have “1” and “0” as its values because

https://www.kaggle.com/datasets/utkarshx27/which-resume-attributes-drive-job-callbacks?select=resume.csv
https://www.kaggle.com/datasets/utkarshx27/which-resume-attributes-drive-job-callbacks?select=resume.csv


these correlate with a yes or no question. Lastly, only 2 of the 30 attributes contain missing

values which are job federal contractor and minimum experience required, and we kept this in

mind as we went into preprocessing.

Attribute Description Values

1. job_ad_id Unique ID associated with the
advertisement

numeric

2. job_city City where the job was located Boston
Chicago

3. job_industry Industry of the job other_service
business_and_personal_service
wholesale_and_retail_trade
finance_insurance_real_estate
manufacturing

4. job_type Type of role secretary
retail_sales
manager
sales_rep
clerical

5. job_fed_contractor If the employer is a federal
contractor

0 = No
1 = Yes, NA

6. job_equal_opp_employer If the employer is an Equal
Opportunity Employer

0 = No
1 = Yes

7. job_ownership Type of company private
unknown
nonprofit
public

8. job_req_any If any job requirements are listed (If
there are, the other job_req_* fields
give more detail)

0 = No
1 = Yes

9. job_req_communication If communication skills are required 0 = No
1 = Yes

10. job_req_education If some level of education is
required

0 = No
1 = Yes



11. job_req_min_experience Amount of experience required ‘Some’ mixed in with numeric
attributes

12. job_req_computer If computer skills are required 0 = No
1 = Yes

13. job_req_organization If organization skills are required 0 = No
1 = Yes

14. job_req_school Level of education required none_listed
high_school_grad
some_college
college

15. recieved_callback If there was a callback from the job
posting for the person listed on this
resume

0 = No
1 = Yes

16. firstname The first name that was used on the
resume

strings

17. race Inferred race associated with the
first name on the resume

white
black

18. gender Inferred gender associated with the
first name on the resume

f
m

19. years_college Years of college education listed on
the resume

0
1
2
3
4

20. college_degree If the resume listed a college degree 0 = No
1 = Yes

21. honors If the resume listed that the
candidate has been awarded some
honors

0 = No
1 = Yes

22. worked_during_school If the resume listed working while in
school

0 = No
1 = Yes

23. years_experience Years of experience listed on the
resume

Numeric (1-44)

24. computer_skills If computer skills were listed on the
resume.These skills were adapted

0 = No
1 = Yes



for listings, though the skills were
assigned independently of other
details on the resume.

25. special_skills If any special skills were listed on
the resume

0 = No
1 = Yes

26. volunteer If volunteering was listed on the
resume

0 = No
1 = Yes

27. military If military experience was listed on
the resume

0 = No
1 = Yes

28. employment_holes If there were holes in the person's
employment history

0 = No
1 = Yes

29. has_email_address If the resume lists an email address 0 = No
1 = Yes

30. resume_quality Each resume was generally
classified as either higher or lower
quality

high
low

III. Preprocessing

After choosing our dataset and looking at it closer, we realized we chose to work with a

heavily numeric dataset that also had various missing values. We decided to start with the

spreadsheet version of the data to deal with some discretizing and normalizing the attributes. We

also needed to set the class attribute inside the Excel sheet itself as originally it was detecting

resume quality as the class attribute but our main focus is if they got a callback from their

resume. We moved the callback attribute to the end of the Excel file to declare that as the class

attribute. We also decided to delete the job_id attribute. This was specific to what ad the job was

found in and had no predictiveness. We assume that there is not an effect on the callback based

on which ad the job had been found in.

From there, we had to deal with our most confusing attribute which was

job_req_min_experience as this attribute not only had missing values, but had numeric values

with nominal values. We made this attribute nominal by discretizing the numeric values around



some information we were already given. We decided to change these manually. All the

instances with “some” we kept as “some”. If the value was less than or equal to 2, we assigned to

“some” as well. Anything between 2 and 5 was assigned to “moderate” and anything greater than

5 was “alot”. Then anything that was 0 or blank we defaulted to “None”.

After this, we uploaded the dataset into weka. From there we used a Numeric to Nominal

filter to make all the attributes easier to work with in terms of association learning. We did not

need to do this for classification but we went ahead and did all attributes so we had it prepped

and ready for association learning. The biggest reason for this with classification would have

been for the 0 and 1 heavy attributes. There were various attributes with 0 and 1, which we read

as yes or no in terms of the attributes they were associated with. Because of this, we knew we

wanted to make it nominal where 0 and 1 were their own values that were understood as a “yes”

or a “no” rather than number. After discretizing these, we were left with almost all nominal

dataset except for one numeric attribute which was years_experience. We then used weka to

make this nominal as well. It discretized the years_experience into 3 buckets of (-infinity,9),

(9,18), and (18, infinity).

To finalize the dataset, we had to split it up into training and testing data. For this, we

decided our easiest split was going to be based on the city the job was in. We split the data so

each dataset only consisted of one city which would be either Chicago or Boston. Chicago would

be used as our training data to make and build the models while Boston is going to be our testing

data that we will use on the models created from the Chicago dataset. An important reason for

doing it this way as one goal of this project is to predict if there is a consistent trend of what

good resumes are or if it is dependent on the city. By splitting the data like this, as we test Boston

on Chicago we can see if Boston can be predicted and if not we know there is some attribute that

affects job callbacks and resumes in different locations.

IV. Visualization

To make our data a little bit easier to see, we uploaded our cleaned and discretized data
set into Tableau to create visualizations. After creating several graphs and charts with different
combinations of attributes, the most informative visualizations appear below. The graph below
called “Callbacks by Job Industry and City” displays the job industries that applicants received



the most callbacks from, split up by city between Boston and Chicago. For both cities, we clearly
see that applicants received the most callbacks from the industry labeled “other_service,”
followed by “business_and_personal_service” and “wholesale_and_retail_trade.” Within the last
three industries, there is more variance between the two cities. Although it is not quite clear what
the attribute “other_service” entails, it can reasonably be inferred that service industries, such as
restaurants, are lumped into this category. It makes sense that service industries would call back
most often because they often require little experience or education and, most of the time, are
always looking for help.



The next graph, “Callbacks by Job Type and Experience,” highlights the amount of callbacks
received based on the type of job and filtered by the minimum experience required by that job.
This bar chart was not separated by city. The job for which the most callbacks were received was
a secretary position. As shown by the color filter, most secretary positions required no
experience. This was true across the other job types except for managers and supervisors. Most
of those types of positions required at least some experience, with supervisors needing more
moderate experience. This may infer that experience is a highly sought after quality on a resume,
especially for more complex, higher-paying jobs, and lack of experienced applicants contributes
to the lack of callbacks from that job. It is interesting to see that the job with the most callbacks
was a secretary. As seen in the following bar chart, there are far more females that received
callbacks than males, which, stereotypically, may be correlated to the types of jobs with the most
callbacks.



As previously pointed out, females receive significantly more callbacks than males, despite there
being more males in the dataset than females. When comparing race, there are more white
applicants receiving callbacks than black applicants. Seeing as how there are far less instances in
the dataset reported as black than white, however, this is not surprising.



The above chart displays the sum of callbacks received based on minimum experience required
and split by city. Most jobs that called the applicant back required no experience, which is not
shocking considering that it is easier to fill positions that do not require experience. Boston
seems to have significantly more callbacks for jobs with no experience than in Chicago. As the
experience requirements increase, however, we see an increase in Chicago’s sum of callbacks,
which may indicate that different cities have different job needs and, therefore, different required
experience levels.



Next, we explored the relationship between education requirements and type of job in relation to
the amount of callbacks received by applicants and the sum of college degrees held by
applicants. The amount of callbacks is represented by the number inside of each box in the
graph, and the amount of college degrees is represented on a color scale from light to dark blue.
The graph clearly shows that the jobs with the most callbacks did not have any educational
requirements listed and jobs with college requirements had very few callbacks. It is interesting to
see how jobs often required either no education or at least some college education, and jobs that
required only a high school degree had no callbacks. Even more interesting is how applicants
who did receive a college degree still received the most callbacks from jobs where it was not a
requirement. It is evident that even with a college degree fulfilling the job’s education
requirement, it is difficult to receive a callback from a competitive job. This may reasonably
indicate a college degree is not one of the most important factors that makes an applicant stand
out when trying to secure a job in a tough, competitive climate.

V. Analysis and Results

Our class attribute, received_callback, for the Chicago training set has 2521 instances for
the value 0 (no) and only 182 instances for the value 1 (yes). This means the data is unbalanced
because we have an uneven distribution of class attribute values. As a result, we are more likely
to predict the majority class, which is that the applicant did not receive a callback. However,
predicting the majority outcome rarely says anything interesting about the data. For each
classification learning algorithm, we used different filters to tackle this issue and see if we can
get a better model. The cost sensitive classifier lets us adjust the cost, or penalty, of making an
incorrect prediction in the evaluation phase, and SMOTE extrapolates a “nearest neighbor”
instance of the same class value to oversample as many new instances as you request. Again,
each model’s accuracy tells us how the model performs on the Boston dataset.



a. OneR

The OneR algorithm produces a model based on one input attribute, and so it is
considered a baseline strategy. It does not work well if many of the input values have fewer
possible values than the output attribute does, but we do not have this issue with our dataset. In
addition, the most predictive attribute determined by OneR is not always the one preferred by a
decision tree algorithm.

Filter Accuracy Total Instances Instances of Unbalanced
Value

None 90.3047% 2703 182

CostSensitiveClassifier

(penalty = 15)

43.952% 2703 182

CostSensitiveClassifier

(penalty = 10)

58.0794% 2703 182

CostSensitiveClassifier

(penalty = 7)

65.097% 2703 182

SMOTE 65.097% 3977 1456

SMOTE 42.0129% 5433 2912

Even though the model with no filter has the highest accuracy by far, it is important to
note that it does not correctly classify any instances of the unbalanced value. So the no filter
model is not our best model because we are not necessarily interested in predicting the majority
class. The cost sensitive classifier with the penalty increased to 7 gives us a decent model with an
accuracy of 65.097%. The SMOTE filter that uses 3977 instances interestingly gives us the same
accuracy of 65.097%.



b. Naive Bayes Simple

Naive Bayes is different from most algorithms because it does not produce rules. Instead,
it can determine the probability of the class given an instance. This algorithm is under the
assumption that the evidence or attributes are split into parts that are independent. We wanted to
explore this algorithm because it can be more applicable to real world use. If a person gives us
their resume information, then we can tell them the odds that they will receive a callback. The
applicant might be more interested in this type of information rather than a model giving them a
yes or no output.

Filter Accuracy Total Instances Instances of Unbalanced
Value

None 76.1773% 2703 182

CostSensitiveClassifier

(penalty = 20)

89.4275% 2703 182

CostSensitiveClassifier

(penalty = 15)

88.735% 2703 182

CostSensitiveClassifier

(penalty = 10)

87.627% 2703 182

CostSensitiveClassifier

(penalty = 7)

86.1496% 2703 182

Here, the models’ accuracies increase as we increase the penalty for the cost sensitive
classifier. The filter with the highest penalty produces the highest accuracy, even over the no
filter model. However, we might want to be careful with using a model with a very high penalty
because that might skew our results too much. The models with a penalty of 7 and 10 give the
accuracies of 86.1496% and 87.627%, which may be good if it can give us an accurate
probability of not getting the majority class value.



c. J48

The J48 algorithm creates a decision tree based on rules that allow us to classify different
instances. Taking the attribute with the greatest amount of information, this is what the tree uses
for the split to get the greatest classification accuracy. Most of the splits for each branch come
from the highest normalized information gain that the attribute can give. We wanted to explore
this algorithm as we knew it would create a good model for us to see if one city can create a
model that would accurately predict the other as well as the attributes that allow for this to
happen. This helps us to see patterns in the attributes as well as give us an idea of which
attributes provide the most information.

Filter Accuracy Total Instances Instances of Unbalanced
Value

None 90.3047% 2703 182

CostSensitiveClassifier

(penalty = 15)

67.9594% 2703 182

CostSensitiveClassifier

(penalty = 10)

68.2852% 2703 182

CostSensitiveClassifier

(penalty = 7)

69.7599% 2703 182

SMOTE 78.7165% 3977 1456

While the model with no filter had a significantly higher accuracy, this was no use to us.
Because of the unbalanced data, it appears the one branch of the tree was simply taking the ratio
of training to testing instances which gave us such high accuracy that no other branches were
produced. The other tests gave us trees that were very detailed allowing it to be too small to see
which attributes were used where. However, this test does allow us to consider how well the
predictions carry from city to city. As the accuracies of the models are fairly low for what we
would like to see, it gives us the impression that the predictive capabilities of a tree for Chicago
may not work as well on Boston. This brings into question if there is variability in attributes from
city to city on what can predict that callback.



d. Apriori

The apriori algorithm is used for association learning. This is an algorithm that takes item
sets from datasets and makes association rules that meet a minimum support and confidence
threshold. We decided to explore with Apriori as we wanted to look into if any attributes have
similar predictive qualities and produce similar outputs. Starting with a minimum confidence of
90%, taking the top 10 rules, there was nothing we were looking for. As we continued testing, we
found most associations came from attributes within the table but none that led to what we were
looking for. After going through similar tests, changing the confidence, looking at top 50, top
100 rules, we still were not finding anything. Most of the associations we found came from rules
made of smaller itemsets and were reversed of each other. For example, job_req_school =None
⇒ job_req_education = 0. This rule was top for every test and the reverse was the second rule
for every test as well. These rules both are rules where the attributes tell us the same thing as one
is saying no school is required and the other is saying there is no lowest level of school required.
Many other rules like this were the only ones produced, therefore we decided the apriori
algorithm was not going to be as useful as we thought.

e. RandomForest

RandomForest is a type of ensemble machine learning that creates a massive web of trees
and combines the results of these trees to provide the best possible answer to a question. We
decided to employ RandomForest because, as a type of ensemble learning, it combines multiple
models to create the best predictions. When initially running the unbalanced data through, we get
an accuracy of 88.458%, which is a decent accuracy percentage but still has unbalanced data, so
we applied some filters. We then used the cost sensitive classifier to increase the penalty for not
correctly classifying “b.” We increased the penalty by five every time we ran the filter. Doing
this increased the accuracy to 90.3047%, but even after changing the penalty to 10 and 15, the
accuracy remained the same. We then applied the SMOTE filter to increase the number of “b”
instances, and by doing this we decreased the overall accuracy percentage to 86.4728%, but even
though the overall accuracy decreased the data set was more balanced.



Filter Accuracy Total Instances Instances of
Unbalanced Value

None 88.458% 2703 182

CostSensitiveClassifier

(penalty = 5)

90.3047% 2703 182

CostSensitiveClassifier

(penalty = 10)

90.3047% 2703 182

CostSensitiveClassifier

(penalty = 15)

90.3047% 2703 182

SMOTE 86.4728% 3977 1456

f. Bagging

Bagging is a different type of ensemble machine learning. The way it works is that it uses
several training sets and builds the same model for each one. Then, it votes for the nominal
values or takes the average of the numeric values. This type of algorithm is more complex than
OneR and J48 because it is considered a black box algorithm. In other words, we cannot see the
inner workings of the algorithm. This meta learner is more likely to produce a more accurate
model, but it also forces us to only focus on the input and output which is not necessarily bad if
an applicant gives us their resume and is only looking for what kind of outcome they are likely to
get. The bagging algorithm was first run with no filter, and we used OneR as a baseline. Then we
applied the SMOTE filter and tried different types of trees.

Filter Accuracy Total Instances Instances of
Unbalanced Value

None & OneR 90.3047% 2703 182

SMOTE & OneR 65.097% 3977 1456

SMOTE & J48 83.4257% 3977 1456



SMOTE & Random

Forest

86.3804% 3977 1456

SMOTE & REPTree 81.2096% 3977 1456

Like we saw in earlier models, the no filter produced a very high accuracy, but at the
same time, it did not correctly classify any of the instances of the unbalanced value. Thus, the
first model is actually bad. When we used SMOTE with OneR, our accuracy decreased to
65.097%, which is a huge jump. This model is also not ideal because it only picks one predictive
attribute, so it makes sense that the accuracy went down. However, using SMOTE with different
types of tree algorithms produced much better results. As a result, mixing complex algorithms
together can produce more accurate models that are capable of predicting both classes. Our only
sacrifice is that we cannot understand or interpret any rules or how the algorithm gets a certain
output.

VI. Conclusion

Based on the trends of accuracy resulting from each of the algorithms, we have reason to
believe that the qualities that determine whether an applicant gets a callback is shared between
both Chicago and Boston. Even though the algorithms that were run with no filter to address the
unbalanced data consistently produced the highest accuracies, they did not correctly classify any
instances of the unbalanced class. A model that cannot classify all possible cases is considered a
bad model, so the fact that these models gave accuracies above 90%, this percentage is
misleading. Because the Chicago dataset had so many more instances than the Boston dataset,
we did not even attempt to use Boston data as training data because it was so heavily unbalanced.
To correct this unbalanced data, we employed the cost sensitive classifier and SMOTE to create a
more reliable and accurate model. After applying these filters, the accuracy significantly
decreased on certain algorithms like J48 and OneR. However, with some manipulation of the
filters, we were ultimately able to raise those accuracies for, making our models more reliable
and informative.

When looking at attributes that are most predictive, the level of experience an applicant
has makes them more competitive. When looking at education, there were many instances of
applicants with college degrees only receiving callbacks from jobs with less overall requirements
and skill. Jobs that did require college degrees did not have many callbacks, even to applicants
fulfilling this requirement, indicating the competitive nature of those jobs and how holding a



college degree is not necessarily the golden ticket to landing a callback. There were also many of
the same trends observed across both cities, with peaks in the data often correlating between the
two cities. All in all, we accomplished our goals of balancing the data to build more reliable and
accurate models and finding resume qualities across cities that make an applicant stand out.

Data Source:
- https://www.kaggle.com/datasets/utkarshx27/which-resume-attributes-drive-job-callbacks

?select=resume.csv

https://www.kaggle.com/datasets/utkarshx27/which-resume-attributes-drive-job-callbacks?select=resume.csv
https://www.kaggle.com/datasets/utkarshx27/which-resume-attributes-drive-job-callbacks?select=resume.csv

