Data Mining Input: Concepts, Instances, and Attributes

Chapter 2 of Data Mining

Terminology

Components of the input:
- Concepts: kinds of things that can be learned
 - Goal: intelligible and operational concept description
 - E.g.: “Under what conditions should we play?”
 - This concept is located somewhere in the input data
- Instances: the individual, independent examples of a concept
 - Note: more complicated forms of input are possible
- Attributes: measuring aspects of an instance
 - We will focus on nominal and numeric attributes
What is a concept?

- Styles of learning:
 - Classification learning: understanding/predicting a discrete class
 - Association learning: detecting associations between features
 - Clustering: grouping similar instances into clusters
 - Numeric estimation: understanding/predicting a numeric quantity

- Concept: thing to be learned
- Concept description: output of learning scheme

Classification learning

- Example problems: weather data, medical diagnosis, contact lenses, irises, labor negotiations, etc.
 - Can you think of others?
- Classification learning is supervised
 - Algorithm is provided with actual outcomes
- Outcome is called the class attribute of the example
- Measure success on fresh data for which class labels are known (test data, as opposed to training data)
- In practice success is often measured subjectively
 - How acceptable the learned description is to a human user
Association learning

- Can be applied if no class is specified and any kind of structure is considered “interesting”
- Difference from classification learning:
 - Unsupervised
 - I.e., not told what to learn
 - Can predict any attribute’s value, not just the class, and more than one attribute’s value at a time
 - Hence: far more association rules than classification rules
 - Thus: constraints are necessary
 - Minimum coverage and minimum accuracy

Clustering

- Finding groups of items that are similar
- Clustering is *unsupervised*
 - The class of an example is not known
- Success often measured subjectively

<table>
<thead>
<tr>
<th>Sepal length</th>
<th>Sepal width</th>
<th>Petal length</th>
<th>Petal width</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>3.5</td>
<td>1.4</td>
<td>0.2</td>
<td>Iris setosa</td>
</tr>
<tr>
<td>4.9</td>
<td>3.0</td>
<td>1.4</td>
<td>0.2</td>
<td>Iris setosa</td>
</tr>
<tr>
<td>7.0</td>
<td>3.2</td>
<td>4.7</td>
<td>1.4</td>
<td>Iris versicolor</td>
</tr>
<tr>
<td>6.4</td>
<td>3.2</td>
<td>4.5</td>
<td>1.5</td>
<td>Iris versicolor</td>
</tr>
<tr>
<td>6.3</td>
<td>3.3</td>
<td>6.0</td>
<td>2.5</td>
<td>Iris virginica</td>
</tr>
<tr>
<td>5.8</td>
<td>2.7</td>
<td>5.1</td>
<td>1.9</td>
<td>Iris virginica</td>
</tr>
</tbody>
</table>
Numeric estimation

- Variant of classification learning where the output attribute is numeric (also called “regression”)
- Learning is *supervised*
 - Algorithm is provided with target values
- Measure success on test data

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>5</td>
</tr>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>True</td>
<td>0</td>
</tr>
<tr>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>55</td>
</tr>
<tr>
<td>Rainy</td>
<td>Mild</td>
<td>Normal</td>
<td>False</td>
<td>40</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Some input terminology

- Each row in a collection of training data is known as an *example* or *instance*.
- Each column is referred to as an *attribute*.
- The attributes can be divided into two types:
 - the *output* attribute – the one we want to determine/predict
 - the *input* attributes – everything else

<table>
<thead>
<tr>
<th>Input attributes</th>
<th>Model</th>
<th>Output attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>fever, swollen glands, headache...</td>
<td>[rules or tree or...]]...</td>
<td>diagnosis</td>
</tr>
</tbody>
</table>

40 False Normal Mild Rainy
55 False High Hot Overcast
5 False High Hot Sunny
Play-time

40 False Normal Mild Rainy
55 False High Hot Overcast
5 False High Hot Sunny
Play-time
What’s in an example?

- Instance: specific type of example
 - Thing to be classified, associated, or clustered
 - Individual, independent example of target concept
 - Characterized by a predetermined set of attributes
- Input to learning scheme: set of independent instances \(\rightarrow\) dataset
 - Represented as a single relation/flat file
 - Note difference from relational database
- Rather restricted form of input
 - No relationships between objects/instances
 - Most common form in practical data mining

Example: A family tree

```
Peter M = Peggy F
  Steven M  Graham M  Pam F = Ian M  Pippa F  Brian M
      Anna F   Nikki F
Grace F = Ray M
```

`
Family tree represented as a table

<table>
<thead>
<tr>
<th>Name</th>
<th>Gender</th>
<th>Parent1</th>
<th>parent2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peter</td>
<td>Male</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Peggy</td>
<td>Female</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Steven</td>
<td>Male</td>
<td>Peter</td>
<td>Peggy</td>
</tr>
<tr>
<td>Graham</td>
<td>Male</td>
<td>Peter</td>
<td>Peggy</td>
</tr>
<tr>
<td>Pam</td>
<td>Female</td>
<td>Peter</td>
<td>Peggy</td>
</tr>
<tr>
<td>Ian</td>
<td>Male</td>
<td>Grace</td>
<td>Ray</td>
</tr>
<tr>
<td>Pippa</td>
<td>Female</td>
<td>Grace</td>
<td>Ray</td>
</tr>
<tr>
<td>Brian</td>
<td>Male</td>
<td>Grace</td>
<td>Ray</td>
</tr>
<tr>
<td>Anna</td>
<td>Female</td>
<td>Pam</td>
<td>Ian</td>
</tr>
<tr>
<td>Nikki</td>
<td>Female</td>
<td>Pam</td>
<td>Ian</td>
</tr>
</tbody>
</table>

The “sister-of” relation: Two versions

<table>
<thead>
<tr>
<th>First person</th>
<th>Second person</th>
<th>Sister of?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peter</td>
<td>Peggy</td>
<td>No</td>
</tr>
<tr>
<td>Peter</td>
<td>Steven</td>
<td>No</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Steven</td>
<td>Peter</td>
<td>No</td>
</tr>
<tr>
<td>Steven</td>
<td>Graham</td>
<td>No</td>
</tr>
<tr>
<td>Steven</td>
<td>Pam</td>
<td>Yes</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Ian</td>
<td>Pippa</td>
<td>Yes</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Anna</td>
<td>Nikki</td>
<td>Yes</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Nikki</td>
<td>Anna</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First person</th>
<th>Second person</th>
<th>Sister of?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steven</td>
<td>Pam</td>
<td>Yes</td>
</tr>
<tr>
<td>Graham</td>
<td>Pam</td>
<td>Yes</td>
</tr>
<tr>
<td>Ian</td>
<td>Pippa</td>
<td>Yes</td>
</tr>
<tr>
<td>Brian</td>
<td>Pippa</td>
<td>Yes</td>
</tr>
<tr>
<td>Anna</td>
<td>Nikki</td>
<td>Yes</td>
</tr>
<tr>
<td>Nikki</td>
<td>Anna</td>
<td>Yes</td>
</tr>
<tr>
<td>All the rest</td>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>

Closed-world assumption
A full representation in one *flat file* table

<table>
<thead>
<tr>
<th>Name</th>
<th>Gender</th>
<th>Parent1</th>
<th>Parent2</th>
<th>Name</th>
<th>Gender</th>
<th>Parent1</th>
<th>Parent2</th>
<th>Sister of?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steven</td>
<td>Male</td>
<td>Peter</td>
<td>Peggy</td>
<td>Pam</td>
<td>Female</td>
<td>Peter</td>
<td>Peggy</td>
<td>Yes</td>
</tr>
<tr>
<td>Ian</td>
<td>Male</td>
<td>Grace</td>
<td>Ray</td>
<td>Pam</td>
<td>Female</td>
<td>Peter</td>
<td>Peggy</td>
<td>Yes</td>
</tr>
<tr>
<td>Brian</td>
<td>Male</td>
<td>Grace</td>
<td>Ray</td>
<td>Pippa</td>
<td>Female</td>
<td>Grace</td>
<td>Ray</td>
<td>Yes</td>
</tr>
<tr>
<td>Anna</td>
<td>Female</td>
<td>Pam</td>
<td>Ian</td>
<td>Nikki</td>
<td>Female</td>
<td>Pam</td>
<td>Ian</td>
<td>Yes</td>
</tr>
<tr>
<td>Nikki</td>
<td>Female</td>
<td>Pam</td>
<td>Ian</td>
<td>Anna</td>
<td>Female</td>
<td>Pam</td>
<td>Ian</td>
<td>No</td>
</tr>
</tbody>
</table>

If second person’s gender = female and first person’s parent1 = second person’s parent1 then sister-of = yes

Generating a flat file

- Process of flattening is called “denormalization”
 - Several relations are joined together to make one
- Possible with any finite set of finite relations
 - More on this in CSC-341 😊
- Problematic: relationships without pre-specified number of objects
 - “sister of” contains two objects
 - concept of *nuclear-family* may be unknown
 - combinatorial explosion in the flat file
- Denormalization may produce spurious regularities that reflect structure of database
 - Example: “supplier” predicts “supplier address”
Multi-instance Concepts

- Each individual example comprises a set of instances
 - multiple instances may relate to the same example
 - individual instances are *not* independent
 - “bag” of instances in training data have same class
 - All instances are described by the same attributes
 - One or more instances within an example may be responsible for its classification
- Goal of learning is still to produce a concept description
- Examples
 - multi-day game activity (the weather data)
 - classification of computer users as experts or novices
 - response of users to multiple credit card promotions
 - performance of a student over multiple classes

What’s in an attribute?

- Each instance is described by a fixed predefined set of features, its “attributes”
- But: number of relevant attributes may vary
 - Example: table of transportation vehicles
 - Possible solution: “irrelevant value” flag
- Related problem: existence of an attribute may depend on value of another one
 - Example: “spouse name” depends on “married?”
 - Possible solution: methods of data reduction
- Possible attribute types (“levels of measurement”):
 - *Nominal, ordinal, interval* and *ratio*
 - Simplifies to *nominal* and *numeric*
Types of attributes

• **Nominal** attributes have values that are "names" of categories.
 - there is a small set of possible values

attribute	possible values
Fever	{Yes, No}
Diagnosis	{Allergy, Cold, Strep Throat}
Outlook	{sunny, overcast, raining}

 • In classification learning, the output attribute is always nominal.
 • *Nominal* comes from the Latin word for name
 • No relation is implied among nominal values
 • No ordering or distance measure
 • Can only test for equality

 • **Numeric** attributes have values that come from a range of numbers.

 | attribute | possible values |
 |--------------|----------------|
 | Body Temp | any value in 96.0-106.0 |
 | Salary | any value in $15,000-250,000 |

 • you can order their values (definition of “ordinal” type)
 $210,000 > $125,000
 $98.6 < 101.3

• What about this one?

 | attribute | possible values |
 |--------------|----------------|
 | Product Type | {0, 1, 2, 3} |

 • If numbers are used as IDs or names of categories, the corresponding attribute is actually nominal.

 • Note that it doesn’t make sense to order the values of such attributes.
 - example: product type 2 > product type 1
 doesn’t have any meaning

 • Also note that some nominal values *can* be ordinal:
 - hot > mild > cool
 - young < old
 - freshman < sophomore < junior < senior
Ordinal quantities

- Impose order on values
 - But no distance between values defined
- Example:
 - attribute “temperature” in weather data
 - Values: “hot” > “mild” > “cool”
 - Note: addition and subtraction don’t make sense
- Example rule:
 \[
 \text{temperature} < \text{hot} \implies \text{play} = \text{yes}
 \]
- Distinction between nominal and ordinal not always clear (e.g. attribute “outlook” – is there an ordering?)

Nominal vs. ordinal

- Attribute “age” nominal

 \[
 \begin{align*}
 &\text{If age} = \text{young} \text{ and astigmatic} = \text{no} \\
 &\text{and tear production rate} = \text{normal} \\
 &\text{then recommendation} = \text{soft}
 \end{align*}
 \]

 \[
 \begin{align*}
 &\text{If age} = \text{pre-presbyopic} \text{ and astigmatic} = \text{no} \\
 &\text{and tear production rate} = \text{normal} \\
 &\text{then recommendation} = \text{soft}
 \end{align*}
 \]

- Attribute “age” ordinal
 (e.g. “young” < “pre-presbyopic” < “presbyopic”)

 \[
 \begin{align*}
 &\text{If age} \leq \text{pre-presbyopic} \text{ and astigmatic} = \text{no} \\
 &\text{and tear production rate} = \text{normal} \\
 &\text{then recommendation} = \text{soft}
 \end{align*}
 \]
Interval quantities

- Interval quantities are not only ordered but measured in fixed numerical units
- Example: attribute “year”
- Difference of two values makes sense
- Sum or product doesn’t make sense

Ratio quantities

- Ratio quantities are those for which the measurement scheme defines a zero point
- Example: attribute “distance”
 - Distance between an object and itself is zero
- Ratio quantities are treated as real numbers
 - All mathematical operations are allowed
Attribute types used in practice

- Most schemes accommodate just two levels of measurement:
 - nominal and numeric, by which we typically only mean ordinal
- Nominal attributes are also called “categorical”, ”enumerated”, or “discrete”
- Ordinal attributes are also called “numeric”, or “continuous”

Preparing the input

- Denormalization is not the only issue
- Problem: different data sources (e.g. sales department, customer billing department, …)
 - Differences: styles of record keeping, conventions, time periods, primary keys, errors
 - Data must be assembled, integrated, cleaned up
 - “Data warehouse”: consistent point of access
- External data may be required (“overlay data”)

→ Leads to many potential dataset problems
Missing values

- Frequently indicated by out-of-range entries
 - E.g. -999, "?"
 - Types: unknown, unrecorded, irrelevant
 - Reasons:
 - malfunctioning equipment
 - changes in experimental design (e.g., new survey questions)
 - collation of different datasets
 - measurement not possible
 - user refusal to answer survey question
- Missing value may have significance in itself (e.g. missing test in a medical examination)
 - Most schemes assume that is not the case: “missing” may need to be coded as additional value

Inaccurate values

- Reason: data has not been collected for the purpose of mining
- Result: errors and omissions that don’t affect original purpose of data but are critical to mining
 - E.g. data on hobbies of university students and faculty
- Typographical errors in nominal attributes ⇒ values need to be checked for consistency
- Typographical, measurement, rounding errors in numeric attributes ⇒ outliers need to be identified
 - What facility of Weka did we learn in lab that might be useful here?
- Errors may be deliberate
 - E.g. wrong zip codes
Unbalanced data

- Suppose the diagnosis dataset had 97 instances of allergy, 2 of cold, and 1 of strep
 - Consequences?
- Another lesson about raw accuracy percentages not telling the whole story
 - Recall our prior discussion of the importance of evaluation
- Predicting the majority outcome rarely says anything interesting about the data

Other problems

- Duplicate / redundant data
 - Instances
 - Attributes (already discussed: “What’s in an attribute?”)
- Stale data
- Different formats
Noise

- **Noisy data** is meaningless data
 - Not useful for prediction
- The term has often been used as a synonym for corrupt data
- Its meaning has expanded to include any data that cannot be understood and interpreted correctly by machines
 - unstructured text for example
- Distinguishing *signal* from *noise* is the task at the heart of data mining

- Addressing these issues requires a process of *data cleaning*
 - Also called *pre-processing*, or
 - *Data wrangling* (sometimes)
Getting to know the data

- Simple visualization tools are very useful
 - Nominal attributes: histograms
 - Q: Is the distribution consistent with background knowledge?
 - Build hypotheses about which attributes to study closely
 - Numeric attributes: graphs
 - Q: Any obvious outliers?
- 2-D and 3-D plots show dependencies
- Need to consult domain experts
- Too much data to inspect? Take a sample!
- More complex data viz tools represent an entire subdiscipline of Computer Science

The ARFF format

```
@relation weather

@attribute outlook {sunny, overcast, rainy}
@attribute temperature numeric
@attribute humidity numeric
@attribute windy {true, false}
@attribute play? {yes, no}

@data
sunny, 85, 85, false, no
sunny, 80, 90, true, no
overcast, 83, 86, false, yes
...```
Additional attribute types

- ARFF supports *string* attributes:

  ```
 @attribute description string
  ```

  - Similar to nominal attributes but list of values is not pre-specified

- It also supports *date* attributes:

  ```
 @attribute today date
  ```

  - Uses the ISO-8601 combined date and time format `yyyy-MM-dd-THH:mm:ss`

Sparse data

- In some applications most attribute values in a dataset are zero
  - word counts in a text categorization problem
  - product counts in market basket analysis

- ARFF supports sparse data

  ```
 0, 26, 0, 0, 0, 0, 63, 0, 0, 0, "class A"
 0, 0, 0, 42, 0, 0, 0, 0, 0, 0, "class B"
  ```

  ```
 {1 26, 6 63, 10 "class A"}
 {3 42, 10 "class B"}
  ```
Finding datasets

• Many sources:
  – Google’s Public Data Explorer
  – UCI Machine Learning Repository
  – U.S. Census Bureau
  – National Space Science Data Center
  – Journal of Statistics Education data archive
  – KDnuggets dataset repository
  – [Kaggle.com](https://www.kaggle.com) (feel like winning some money?)
  – Search for “dataset” and the subject you’re interested in
  – Tools for data scraping from the web

Applied Pre-Processing

• Review: The Data Mining Process
• Key steps:
  – *assemble the data in the format needed for data mining*
    • typically a text file
    • referred to as *pre-processing*:
      – Major tasks: extraction, integration, transformation, cleaning, reduction
  – perform the data mining
  – interpret/evaluate the results
  – apply the results
Why Data Pre-processing?

• Data in the real world is dirty
  • **incomplete**: lacking attribute values, lacking certain attributes of interest
    – e.g., occupation=""
  • **noisy**: containing errors or outliers
    – e.g., Salary="-10"
  • **inconsistent**: containing discrepancies in codes or names
    – e.g., Age="42" Birthday="03/07/1997"
    – e.g., Was rating “1,2,3”, now rating “A, B, C”
    – e.g., discrepancy between duplicate records

Why is Data Dirty?

• **Incomplete data** (missing values) may come from
  – “Not applicable” data value when collected
  – Different considerations between the time when the data was collected and when it is analyzed
  – Human/hardware/software problems

• **Noisy data** (incorrect values) may come from
  – Faulty data collection instruments
  – Human or computer error at data entry
  – Errors in data transmission

• **Inconsistent data** may come from
  – Different data sources (resulting from integration)
  – Functional dependency violation (e.g., modify some linked data)
Why Data Pre-Processing?

• No quality data, no quality mining results!
• Quality decisions must be based on quality data
• Data extraction, integration, transformation, cleaning, and reduction comprises the majority of the work of building target data
• Data warehouse needs consistent integration of quality data

Data Extraction

• Ready-made downloads
  – See prior discussion
• Web scraping
  – Requires some programming ability
• Web APIs
  – I want some data from service X. Does service X have an API?
  – Look at the API documentation. Figure out if there is a URL that retrieves the kind of data you’re looking for.
  – Sign up for an API key if one is required.
  – Figure out what parameters you need to include in the URL in order to get the exact data you want.
  – Load the URL, parameters included, into your browser. Get back a response.
  – Take the JSON or XML data and unpack it.
Data Integration

• Combines data from multiple sources into a coherent store
• In designing a database, we try to avoid redundancies by normalizing the data
• As a result, the data for a given entity (e.g., a customer) may be:
  – spread over multiple tables
  – spread over multiple records within a given table

• To prepare for data warehousing and/or data mining, we often need to denormalize the data.
  – multiple records for a given entity → a single record
Data Integration

- Example: a simple database design
  - Normalized

```
Customer
 | custnum | name | phone |
 +---------+--------+--------
Orders
 | ordernum | custnum | prodnum | date | units |
 +---------+---------+---------+-------+-------
Products
 | prodnum | pdesc | unitprice |
 +---------+---------+-----------
```

- Denormalized version would have a single table, with one instance for every order, with customer and product information repeated

Data Integration Issues

- Entity identification problem
  - identify real world entities from multiple data sources,
    e.g., A.cust-id ≡ B.cust-#, “LeBron James” vs. “L. James”

- Detecting and resolving data value conflicts
  - for the same real world entity, attribute values from different sources are different
  - possible reasons: different representations, different scales
    - e.g., metric vs. English units, date formats, etc.

- Redundant data
  - Attributes repeated in different databases
  - Records with different names in different databases
Data Integration Issues

- Careful integration of the data from multiple sources may help reduce/avoid redundancies and inconsistencies and improve mining speed and quality
- Techniques
  - Data scrubbing
    - Detect errors and make corrections with simple domain knowledge
      - E.g., spell check, zip code knowledge, etc.
  - Data auditing
    - Analyze data to discover rules and relationships to detect violations
      - Clustering to find outliers
      - Correlation analysis for redundant attributes
  - Numerous others

These fall into the category of data cleaning, coming up.

Transforming the Data

- We may also need to reformat or transform the data
  - discretization, normalization are primary examples
  - we can use a Python program to do the reformatting
  - Weka also provides several useful filters
- One reason for transforming the data: many machine-learning algorithms can only handle certain types of data
Transforming the Data

• We may also need to reformat or transform the data
  – discretization, normalization are primary examples
  – we can use a Python program to do the reformatting
  – Weka also provides several useful filters

• One reason for transforming the data: many machine-learning algorithms can only handle certain types of data
  – some algorithms only work with nominal attributes – attributes with a specified set of possible values
    • examples: {yes, no}
    {strep throat, cold, allergy}
  – other algorithms only work with numeric attributes
Discretizing Numeric Attributes

• We can turn a numeric attribute into a nominal/categorical one by using some sort of discretization.

• This involves dividing the range of possible values into subranges called buckets or bins.

  – example: an age attribute could be divided into these bins:
    
    child: 0-12
    teen: 12-17
    young: 18-35
    middle: 36-59
    senior: 60-

Simple Discretization Methods

• What if we don't know which subranges make sense?

• Equal-width binning divides the range of possible values into N subranges of the same size.

  – bin width = (max value – min value) / N

  – example: if the observed values are all between 0-100, we could create 5 bins as follows:

    width = (100 – 0)/5 = 20
Simple Discretization Methods

• What if we don't know which subranges make sense?
• **Equal-width binning** divides the range of possible values into N subranges of the same size.
  – bin width = (max value – min value) / N
  – example: if the observed values are all between 0-100, we could create 5 bins as follows:

    width = (100 − 0)/5 = 20

    bins: [0-20], [20-40], [40-60], [60-80], [80-100]

    ( or ) means the endpoint is included
    ( or ) means the endpoint is not included

– typically, the first and last bins are extended to allow for values outside the range of observed values
  (-infinity-20], [20-40], [40-60], [60-80], (80-infinity)
Simple Discretization Methods

• What if we don't know which subranges make sense?
• *Equal-width binning* divides the range of possible values into $N$ subranges of the same size.
  
  – bin width $= (\text{max value} - \text{min value}) / N$
  
  – example: if the observed values are all between 0-100, we could create 5 bins as follows:
    
    \[
    \text{width} = (100 - 0)/5 = 20
    \]
    
    bins: [0-20], (20-40], (40-60], (60-80], (80-100]

  – problems with this equal-width approach?

---

Simple Discretization Methods (cont.)

• *Equal-frequency or equal-height binning* divides the range of possible values into $N$ bins, each of which holds the same number of training instances.

  – example: let's say we have 10 training examples with the following values for the attribute that we're discretizing:
    
    5, 7, 12, 35, 65, 82, 84, 88, 90, 95
Simple Discretization Methods (cont.)
• *Equal-frequency or equal-height binning* divides the range of possible values into $N$ bins, each of which holds the same number of training instances.
  – example: let's say we have 10 training examples with the following values for the attribute that we're discretizing:
    
    $5, 7, 12, 35, 65, 82, 84, 88, 90, 95$

    to create 5 bins, we would divide up the range of values so that each bin holds 2 of the training examples.

Simple Discretization Methods (cont.)
• *Equal-frequency or equal-height binning* divides the range of possible values into $N$ bins, each of which holds the same number of training instances.
  – example: let's say we have 10 training examples with the following values for the attribute that we're discretizing:
    
    $5, 7, 12, 35, 65, 82, 84, 88, 90, 95$

    To select the boundary values for the bins, this method typically chooses a value halfway between the training examples on either side of the boundary

    *final bins: (-inf, 9.5], (9.5, 50], (50, 83], (83, 89], (89, inf)*
Simple Discretization Methods (cont.)

• *Equal-frequency or equal-height binning* divides the range of possible values into N bins, each of which holds the same number of training instances.
  – example: let's say we have 10 training examples with the following values for the attribute that we're discretizing:
    
    \[
    5, 7, 12, 35, 65, 82, 84, 88, 90, 95
    \]
  – Problems with this approach?

Other Discretization Methods

• Ideally, we'd like to come up with bins that capture distinctions that will be useful in data mining.
  – example: if we're discretizing *body temperature*, we'd like the discretization method to learn that 98.6 F is an important boundary value
Other Discretization Methods

• Ideally, we'd like to come up with bins that capture distinctions that will be useful in data mining.
  – example: if we're discretizing body temperature, we'd like the discretization method to learn that 98.6 F is an important boundary value
  – more generally, we want to capture distinctions that will help us to learn to predict/estimate the class of an example

Other Discretization Methods

• Both equal-width and equal-frequency binning are considered unsupervised methods, because they don't take into account the class values of the training examples
Other Discretization Methods

- Both equal-width and equal-frequency binning are considered *unsupervised* methods, because they don't take into account the class values of the training examples
- There are *supervised* methods for discretization that attempt to take the class values into account
  - Minimum bucket size

Discretization in Weka

- In Weka, you can discretize an attribute by applying the appropriate filter to it
- After loading in the dataset in the *Preprocess* tab, click the *Choose* button in the *Filter* portion of the tab
Discretization in Weka

• In Weka, you can discretize an attribute by applying the appropriate filter to it

• After loading in the dataset in the Preprocess tab, click the Choose button in the Filter portion of the tab

• For equal-width or equal-height, you choose the Discretize option in the filters/unsupervised/attribute folder
  – by default, it uses equal-width binning
  – to use equal-frequency binning instead, click on the name of the filter and set the useEqualFrequency parameter to True

Discretization in Weka

• In Weka, you can discretize an attribute by applying the appropriate filter to it

• After loading in the dataset in the Preprocess tab, click the Choose button in the Filter portion of the tab

• For supervised discretization, choose the Discretize option in the filters/supervised/attribute folder
Normalization

• Values scaled to fall within a small, specified range
• Review: when is this transformation necessary?

Nominal Attributes with Numeric Values

• Some attributes that use numeric values may actually be nominal attributes
  – the attribute has a small number of possible values
  – there is no ordering to the values, and you would never perform mathematical operations on them
  – example: an attribute that uses numeric codes for medical diagnoses
  • 1 = Strep Throat, 2 = Cold, 3 = Allergy
Nominal Attributes with Numeric Values

- If you load a comma-separated-value file containing such an attribute, Weka will assume that it is numeric.
- To force Weka to treat an attribute with numeric values as nominal, use the `NumericToNominal` option in the `filters/unsupervised/attribute` folder.
  - Click on the name of the filter, and enter the number(s) of the attributes you want to convert.
- Or edit the ARFF file manually...

Data Cleaning

- Fill in missing values,
- Smooth noisy data,
- Identify or remove outliers,
- Correct inconsistent data,
- Resolve redundancy caused by data integration
- Importance
  - “Data cleaning is the number one problem in data warehousing”
Handling Missing Values

• Options:
  – Ignore them
    • PRISM and ID3 won’t work at all
    • Naïve Bayes handles them fine
    • J48 and nearest neighbor use tricks to get around
  – Remove all instances with missing attribute values
    • Usually done when the class attribute value is missing
    • Unsupervised RemoveWithValues attribute filter in Weka
  – Replace missing values with the most common value for that attribute
    • Unsupervised ReplaceMissingValues attribute filter in Weka
    • Only works with nominal values

• Issues?

Handling Missing Values

• Options
  – Replace with the mean value
  – Replace with the mean value for all instances belonging to the same class (a little smarter for classification)
  – Replace with a new value
    • E.g., “unknown”, outlier value to indicate missing (-999)
  – Regression methods for numeric values

• Issues?
Handling Noisy Data

- **Noise:**
  - random error or variance in a measured attribute
  - outlier values
  - more generally: non-predictive values
- **Combined computer and human inspection**
  - detect suspicious values and check by human
  - data visualization the key tool
- **Clustering**
  - detect and remove outliers
  - also employs data viz
- **Regression**
  - smooth by fitting the data into regression functions
- **Binning methods**
  - employs techniques similar to discretizing

Simple Binning Method

- Sorted attribute values:
  4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
- Partition into (equal-depth) bins:
  - Bin 1: 4, 8, 9, 15
  - Bin 2: 21, 21, 24, 25
  - Bin 3: 26, 28, 29, 34
- **Smoothing by bin averages:**
  - Bin 1: 9, 9, 9, 9
  - Bin 2: 23, 23, 23, 23
  - Bin 3: 29, 29, 29, 29
- **Smoothing by bin boundaries:**
  - Bin 1: 4, 4, 4, 15
  - Bin 2: 21, 21, 25, 25
  - Bin 3: 26, 26, 26, 34
- Note how smoothing mitigates a noisy/outlier value
Data Reduction

• Data can be too big to work with
  – A database/data warehouse may store terabytes of data
  – Complex data analysis/mining may take a very long time to run on the complete data set

• Data reduction
  – Obtain a reduced representation of the data set that is much smaller in volume but yet produce the same (or almost the same) analytical results

• Data reduction strategies
  – Dimensionality reduction — remove unimportant attributes
  – Aggregation and clustering
  – Sampling

Dimensionality Reduction

• Feature selection (i.e., attribute subset selection):
  – Select a minimum set of attributes (features) that is sufficient for the data mining task.

• Heuristic methods (due to exponential # of choices):
  – step-wise forward selection
  – step-wise backward elimination
  – combining forward selection and backward elimination
  – select top N fields using 1R or decision tree algorithm
    • rule of thumb: keep top 50 fields
  – etc
Dimensionality Reduction

• Problematic attributes include:
  – irrelevant attributes: ones that don't help to predict the class
    • despite their irrelevance, the algorithm may erroneously include them in the model
  – attributes that cause overfitting
    • also called false predictors or information leakers
    • example: a unique identifier such as Patient ID
Dimensionality Reduction

• Problematic attributes include:
  – irrelevant attributes: ones that don't help to predict the class
    • despite their irrelevance, the algorithm may erroneously include them in the model
    • sometimes want to remove because data is simply too big
  – attributes that cause overfitting
    • example: a unique identifier such as Patient ID
  – redundant attributes: those that offer basically the same information as another attribute
    • example: in many problems, date-of-birth and age provide the same information
    • some algorithms may end up giving the information from these attributes too much weight

Dimensionality Reduction

• Implementation of feature selection (i.e., attribute subset selection)
• We can remove an attribute manually in Weka by clicking the checkbox next to the attribute in the Preprocess tab and then clicking the Remove button
  – How to determine?
    • Experimentation
    • Correlation analysis (filters in Weka)
Aggregation

• For efficiency of processing, we sometimes may also want to reduce the number of instances (rows)

• Histograms
  – A popular data reduction technique
  – Divide data (values of an attribute) into buckets and store average for each bucket

Clustering

• Partition data set into clusters, and one can store cluster representation only

• Can be very effective if data is clustered but not if data is “smeared”

• There are many choices of clustering definitions and clustering algorithms. We will discuss them later
Clustering

Sampling

• Sampling
  – Choose a representative subset of the data
    • Simple random sampling may have poor performance in the presence of skew
  – Adaptive sampling methods
    • Stratified sampling:
      – Approximate the percentage of each class (or subpopulation of interest) in the overall database
      – Used in conjunction with skewed data
Data Reduction

Raw Data

Cluster/Stratified Sample

Undoing pre-process actions

• In Weka:
  – In the Preprocess tab, the *Undo* button allows you to undo actions that you perform, including:
    • applying a filter to a dataset
    • manually removing one or more attributes
  – If you apply two filters without using *Undo* in between the two, the second filter will be applied to the results of the first filter
  – *Undo* can be pressed multiple times to undo a sequence of actions
Dividing Up the Data File

• To allow us to validate the model(s) learned in data mining, we'll divide the examples into two files:
  – n% for training
  – 100 – n% for testing: these should not be touched until you have finalized your model or models
  – possible splits:
    • 67/33
    • 80/20
    • 90/10

• Alternative to ten-fold cross validation when you have a sufficiently large dataset

Dividing Up the Data File

• You can use Weka to split the dataset for you after you perform whatever reformatting/editing is needed

• If you discretize one or more attributes, you need to do so before you divide up the data file
  – otherwise, the training and test sets will be incompatible
Dividing Up the Data File (cont.)

• Here’s one way to do it in Weka:

  1) shuffle the examples by choosing the Randomize filter from the
     filters/unsupervised/instance folder

  2) save the entire file of shuffled examples in Arff format.

  3) use the RemovePercentage filter from the same folder
     to remove some percentage of the examples
     • whatever percentage you’re using for the training set
     • click on the name of the filter to set the percentage

  4) save the remaining examples in a new file
     • this will be our test data

  5) load the full file of shuffled examples back into Weka

  6) use RemovePercentage again with the same percentage
     as before, but set invertSelection to True

  7) save the remaining examples in a new file
     • this will be our training data

Summary

• Data preparation is a big issue for data mining

• Data preparation includes
  – Data extraction (collection, scraping, API, etc.)
  – Data integration
  – Data transformation (discretization, normalization, etc.)
  – Data cleaning
  – Data reduction and feature selection

• Many methods have been proposed but still an active
  area of research