Data Mining Output: Knowledge Representation

Chapter 3 of Data Mining

Output: Knowledge representation

- Tables
- Linear models
- Trees
- Rules
 - Classification rules
 - Association rules
 - Rules with exceptions
- Instance-based representation
- Clusters
Output: representing structural patterns

- Many different ways of representing patterns
 - Decision trees, rules, …
- Also called “knowledge” representation
- Representation determines inference method
 - Algorithm is targeted to a specific output
- Understanding the output is the key to understanding the underlying learning methods
- Different types of output for different learning problems (e.g. classification, regression, …)

Tables

- Simplest way of representing output:
 - Use the same format as input!
- Decision table for the weather problem:

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Humidity</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>High</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>Normal</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcast</td>
<td>High</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcast</td>
<td>Normal</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>High</td>
<td>No</td>
</tr>
<tr>
<td>Rainy</td>
<td>Normal</td>
<td>No</td>
</tr>
</tbody>
</table>

- Main problem: selecting the right attributes
 - Have to experiment to decide which are not relevant to the concept to be learned
Linear models

- Another simple representation
- Also called a regression model
 - Inputs (attribute values) and output are all numeric
- Output is the sum of weighted attribute values
 - The trick is to find good values for the weights that give a good fit to the training data
 - Easiest to visualize in two dimensions
 - Straight line drawn through the data points represents the regression model / function

An interesting linear regression function

Full Pay Pct = 29.73 - 0.13*Ranking
Linear models for classification

- Can be applied to binary classification
 - Not only numerical estimation
- Line separates the two classes
 - Decision boundary - defines where the decision changes from one class value to the other
- Prediction is made by plugging in observed values of the attributes into the expression
 - Predict one class if output ≥ 0, and the other class if output < 0
- Boundary becomes a high-dimensional plane (hyperplane) when there are multiple attributes

Separating setosas from versicolors

2.0 - 0.5PETAL-LENGTH - 0.8PETAL-WIDTH = 0
Trees

- “Divide-and-conquer” approach produces tree
 - Value of one attribute rules out certain classes
 - Nodes involve testing a particular attribute
 - Usually, attribute value is compared to constant
 - Other possibilities:
 - Comparing values of two attributes
 - Using a function of one or more attributes
 - Leaves assign classification, set of classifications, or probability distribution to instances
 - New, unknown instance is routed down the tree for classification / prediction
Nominal and numeric attributes

- **Nominal:**
 number of children usually equal to number of values
 \[\Rightarrow \] attribute typically won’t get tested more than once
 - Other possibility: division into two subsets

- **Numeric:**
 test whether value is greater or less than constant
 \[\Rightarrow \] attribute may get tested several times
 - Other possibility: three-way split (or multi-way split)
 - Integer: *less than, equal to, greater than*
 - Real: *below, within, above* a given interval
 - Sometimes missing values require their own split
Missing values

- Does absence of value have some significance?
- Yes ⇒ “missing” is ideally a separate value
 - Must be factored in when building the model (see Chapter 2 notes)
- No ⇒ “missing” must be treated in a special way
 - Solution A: assign instance to most popular branch
 - Solution B: split instance into pieces
 - Pieces receive weight according to fraction of training instances that go down each branch
 - Classifications from leaf nodes are combined using the weights that have percolated to them

Trees for numeric prediction

- **Regression**: the process of computing an expression that predicts a numeric quantity
- **Regression tree**: “decision tree” where each leaf predicts a numeric quantity
 - Predicted value is average value (of the class attribute) of training instances that reach the leaf
- **Model tree**: combine regression tree with linear regression equations at the leaf nodes
 - Linear patches approximate continuous function
Linear regression formula

- Consider a dataset containing video game reviews
- Each instance represents the frequency of words used collectively in all reviews

\[
\text{amazing} = 0.1224 \times \text{different} + 0.4284 \times \text{realistic} + 0.5013 \times \text{original} + 0.496 \times \text{simple} + 0.6497 \times \text{stupid} + 0.6423 \times \text{repetitive} - 3.3661 \times \text{lame} - 5.5266
\]

- How many times would the model predict the word *amazing* is used in reviews of this game?

<table>
<thead>
<tr>
<th>different</th>
<th>realistic</th>
<th>original</th>
<th>challenging</th>
<th>simple</th>
<th>stupid</th>
<th>repetitive</th>
<th>lame</th>
<th>amazing</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>12</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>777</td>
</tr>
</tbody>
</table>

Regression tree

Where:
- LM1 = 8.0525
- LM2 = 10.8965
- LM3 = 21.5446
- LM4 = 46.4725
Model tree

Where:
LM1 = 0.1492 * different + 0.1691 * simple + 0.688
LM2 = 0.1492 * different + 0.0874 * simple + 3.9694
LM3 = 0.1944 * different + 14.9213

Classification rules

- Popular alternative to decision trees
- Antecedent (pre-condition): a series of tests (just like the tests at the nodes of a decision tree)
- Tests are usually logically ANDed together (but may also be general logical expressions)
- Consequent (conclusion): classes, set of classes, or probability distribution assigned by rule
- Individual rules are often logically ORed together
 - Conflicts arise if different conclusions apply
Classification rules

if Swollen Glands == Yes
then Diagnosis = Strep Throat
if Swollen Glands == No and Fever == Yes
then Diagnosis = Cold
if Swollen Glands == No and Fever == No
then Diagnosis = Allergy

If outlook = sunny and humidity = high then play = no
If outlook = rainy and windy = true then play = no
If outlook = overcast then play = yes
If humidity = normal then play = yes
If none of the above then play = yes

“Nuggets” of knowledge

- Are rules independent pieces of knowledge? (It seems easy to add a rule to an existing rule base.)
- Problem: ignores how rules are executed
- Two ways of executing a rule set:
 - Ordered set of rules (“decision list”)
 - Order is important for interpretation
 - E.g. whether or not to play
 - Unordered set of rules
 - E.g. medical diagnosis, contact lense prescription
 - Rules may overlap and lead to different conclusions for the same instance; sometimes may give no answer
Interpreting rules

- What if two or more rules conflict?
 - Give no conclusion at all?
 - Go with rule that is most popular on training data?
 - ...
- What if no rule applies to a test instance?
 - Give no conclusion at all?
 - Go with class that is most frequent in training data?
 - ...

Association rules

- Association rules...
 - ... can predict any attribute and combinations of attributes
 - ... are not intended to be used together as a set
- Problem: immense number of possible associations
 - Output needs to be restricted to show only the most predictive associations \(\Rightarrow \) only those with high support and high confidence
Support and confidence of a rule

- Support: number of instances predicted correctly
 - Also called coverage
- Confidence: number of correct predictions, as proportion of all instances that rule applies to
 - Also called accuracy
- Example: 4 cool days with normal humidity

\[
\text{If temperature} = \text{cool then humidity} = \text{normal}
\]

\[\Rightarrow \text{Support} = 4, \text{confidence} = 100\%\]

- Normally: minimum support and confidence pre-specified (e.g. 58 rules with support \(\geq 2\) and confidence \(\geq 95\%\) for weather data)
 - Support/coverage can also be measured as a percentage of the training instances that the rule applies to

Rules with exceptions

- Idea: allow rules to have \textit{exceptions}
- Example: rule for iris data

\[
\text{If petal-length} \geq 2.45 \text{ and petal-length} < 4.45 \text{ then Iris-versicolor}
\]

- New instance:

<table>
<thead>
<tr>
<th>Sepal length</th>
<th>Sepal width</th>
<th>Petal length</th>
<th>Petal width</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>3.5</td>
<td>2.6</td>
<td>0.2</td>
<td>Iris-setosa</td>
</tr>
</tbody>
</table>

- Modified rule:

\[
\text{If petal-length} \geq 2.45 \text{ and petal-length} < 4.45 \text{ then Iris-versicolor EXCEPT if petal-width} < 1.0 \text{ then Iris-setosa}
\]

\text{Lesson: Fixing up a rule set is not as simple as it sounds!}
Rules involving relations

- So far: all rules involved comparing an attribute-value to a constant (e.g. temperature < 45)
- These rules are called “propositional” because they have the same expressive power as propositional logic
- What if problem involves relationships between examples (e.g. family tree problem)?
 - Can’t be expressed with propositional rules
 - More expressive representation required

The shapes problem

- Target concept: standing up
- Shaded: standing
 Unshaded: lying
A propositional solution

<table>
<thead>
<tr>
<th>Width</th>
<th>Height</th>
<th>Sides</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>Standing</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>4</td>
<td>Standing</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td>Lying</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>3</td>
<td>Standing</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>3</td>
<td>Lying</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>4</td>
<td>Standing</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>4</td>
<td>Lying</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>3</td>
<td>Lying</td>
</tr>
</tbody>
</table>

If width ≥ 3.5 and height < 7.0 then lying
If height ≥ 3.5 then standing

New instance: width=1, height=2
New instance: width=4, height=6

A relational solution

- Comparing attributes with each other

If width $> height$ then lying
If height $> width$ then standing

- Generalizes better to new data
- Standard relations: $=, <, >$
- But: learning relational rules is costly
 - Addition of large number of conditions to consider
- Simple solution: add extra attributes (e.g. a binary attribute is width $< height$?)
 - E.g., “sister-of”
Instance-based representation

- Simplest form of learning: *rote learning*
 - Training instances are searched for instance that most closely resembles new instance
 - The instances themselves represent the knowledge
 - Also called *instance-based* learning
- Similarity function defines what’s “learned”
- Instance-based learning is *lazy* learning
- Methods: *nearest-neighbor, k-nearest-neighbor, ...*

The distance function

- Simplest case: one numeric attribute
 - Distance is the difference between the two attribute values involved (or a function thereof)
- Several numeric attributes: normally, *Euclidean distance* is used and attributes are *normalized*
- Nominal attributes: distance is set to 1 if values are different, 0 if they are equal
- Are all attributes equally important?
 - Weighting the attributes might be necessary
 - Or eliminating some of them (see Lab 2)
Structural description of patterns?

- Only those instances involved in a decision need to be stored
- Noisy instances should be filtered out
- Idea: only use *prototypical* examples

Representing clusters

- For cluster learning, output is a diagram:

 Simple 2-D representation

 ![Simple 2-D representation diagram](image)

 Venn diagram

 ![Venn diagram](image)
Representing clusters

Probabilistic assignment

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.4</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>b</td>
<td>0.1</td>
<td>0.8</td>
<td>0.1</td>
</tr>
<tr>
<td>c</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>d</td>
<td>0.1</td>
<td>0.1</td>
<td>0.8</td>
</tr>
<tr>
<td>e</td>
<td>0.4</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>f</td>
<td>0.1</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>g</td>
<td>0.7</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>h</td>
<td>0.5</td>
<td>0.4</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Dendrogram

- Frequent next step: derive a decision tree or rule set that allocates each new instance into a cluster based on the clusters learned.

Cluster 1

- # Instances: 3
- Sex: Male => 3, Female => 0
- Age: 43.3
- Credit Card Insurance: Yes => 0, No => 3
- Life Insurance Promotion: Yes => 0, No => 3

Cluster 2

- # Instances: 5
- Sex: Male => 2, Female => 3
- Age: 37.0
- Credit Card Insurance: Yes => 1, No => 4
- Life Insurance Promotion: Yes => 3, No => 0

Cluster 3

- # Instances: 7
- Sex: Male => 2, Female => 5
- Age: 19.9
- Credit Card Insurance: Yes => 2, No => 5
- Life Insurance Promotion: Yes => 7, No => 0

Example: An unsupervised clustering of the credit card database. What are the clusters?