
1 

What Would Alan Turing Have Done After 
1954? 

Andrew Hodges 

Wadham College, University of Oxford 

_	Summary. Incomplete aspects of Turing's work are surveyed, with particular ref­
erence to his late interest in the foundations of quantum mechanics, and refuting 
the assertion that his work raised the prospect of constructing physical "oracle­
machines." 

Alan Turing died on 7 June 1954 at the age of 41. It is of course an 
unanswerable question as to what he would have done if he had lived. His 
life was full of surprises at every turn. But I shall use this counterfactual 
theme to survey some incomplete threads in his life and work, some of them 
under-appreciated. I shall also address recent mistaken claims that Turing 
anticipated the agenda of so-called "hypercomputing." 

A Survey of Turing's Legacy in 1954 

In his last year, Turing was exploring many avenues in his morphogenesis 
theory. The problem of explaining the Fibonacci patterns in plants was prob­
ably less tractable than he had at first hoped. But there were other directions 
in which his biological theory might have advanced if he had lived longer. He 
might well have pursued a connection with von Neumann's ideas for discrete 
self-organizing systems, usually considered as the foundation of "artificial life." 
He might have seized upon the decoding of DNA in 1953, which introduced 
discrete logic into biology. It is also notable that it was through numerical 
simulations of non-linear equations, made possible by the computer, that 
chaotic phenomena became accessible to investigation in the 1950s. Such nu­
merical simulations were Turing 's forte by 1954. It seems quite possible that 
he would have seen the nature of chaos rather quicker than other people did. 
So there was great scope for broadening his applied-mathematical interests. 

But Turing had by no means abandoned pure mathematics. He had prob­
ably lost interest in mathematical logic for its own sake. But he might well 
have gone on to contribute to other decision problems within mathematics_ 
In 1950 he had done work on decidability problems in semigroups [35] and 
then Turing described P. S. Novikov's new result on the undecidability of the 
"word problem" for groups in a semi-popular article appearing in 1954 [38]. 

He explained a word problem in terms of a problem in knot theory. This 
illustration itself pointed to another fascinating and growing area in post-war 
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mathematics, and also reflected the more geometrical turn of his interests. 
The 1954 article went on to explain Godel's theorem. This was perhaps the 
first popular article on the subject, which was not at all well known in those 
days. So this last paper also suggests another role that a longer-lived Alan 
Turing might have taken ~ a great communicator of mathematics and sci­
ence to a wide audience. But it also suggests that Turing might have taken 
up, for instance, the outstanding question (Hilbert's Tenth Problem) of the 
solvability of Diophantine equations, not settled in the real world until 1970, 
Martin Davis having a prom.inent role in the story and being a distinguished 
expositor of it [12]. 

What about the future of his work in computer science? Immediately 
after Turing's, death in 1954, his student and friend Robin Gandy wrote to 
Max Newman, Turing's colleague and patron, with an account [17] of what 
struck him as unfinished in Turing's work.' Gandy wrote comments under 
eight different headings. Of these only one was on morphogenesis; only one 
of them, the sixth, was in computer science, and was as follows: 

I always hoped he would return one day to the practical problems 
of making a machine learn. There should be somewhere a copy of the 
report he wrote on this after his sabbatical year at Cambridge from 
the NPL. 

We may well rejoice in the fact that the basis for Christof Teuscher's 
work, which has in turn brought about this Pestschrift for Alan Turing's 
ninetieth birthday, is the practical exploration of the of networks in 
this report [34], enti tIed futuristically Intelligent 

However, it is worth noting Gandy's message that Turing had shown little 
interest in pursuing this work in practice. When he had the 1951 Manchester 
computer at his disposal, he had not used it to follow up his "learning" pro­
posals. This was true also of his ideas for programming. It is very striking 
that he continued to write raw machine code for the IVlanchester machine, al­
though he of all people kne"Vl that the machine itself could have been made to 
do the routine work. In 1946, years ahead of he had seen the potential 
of the stored program for interpreters, compilers and scripts 132]: 

The process of constructing instruction table should be very fas­
cinating. There need be no real danger of it ever becoming a drudge, 
for any processes that are quite mechanical may be turned over to 
the machine itself. 

In 1947 he explicitly recognizee! the general nature of programming languages 
[33j­

... one could communicate with these machines in any language 
provided it was an exact language, i.e. in principle one shoule! be able 
to communicate in any symbolic logic, provided that the machine 
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were given instruction tables which would allow it to interpret that 
logical system. 

In 1950 his M.Sc. student Audrey Bates worked on putting a small part 
of Church's lambda-calculus in a form where it could be mechanized by the 
Manchester computer [1] . This work could have led to LISP programming, 
which was also inspired by the lambda-calculus, but he never followed it up. 
The same is true of the work he did on program proofs in 1949; this was 
never taken up and had to wait for others in the 1960s. 

The computer scientist John McCarthy would have invited Turing to 
Dartmouth College in 1956; for what is usually thought of as the confer­
ence that began Artificial Intelligence. What would Turing have said, if he 
had accepted such an invitation? He would have been living witness to the 
fact that Artificial Intelligence research had started well before 1956. The 
wartime origin was described in [20, e.g. pp. 210-214, 265, 291-294] with a 
deeper analysis in [21 , 23]. Perhaps he would have advocated avoiding the 
separation of "top-down" from "bottom-up" research that was in fact to char­
acterize AI research so strongly for the next thirty years. For Turing in 1948 
and again in 1950 [34,36] had described both approaches together, saying 
that both should be tried out. But he had made little effort to make such 
trials himself. Turing preferred making the first at tack at a new idea and then 
leaving the details for others to work out. This was true of his programming 
theory, his bottom-up ideas on neural networks, and his top-down ideas on 
machine chess-playing. So it is by no means obvious that a longer life would 
have led him to continue with AI research. 

There is, however, another arena where his knowledge of mathematical 
logic might have been brought into practical computer science to make a first 
attack on a new area: this is what we have known as complexity theory since 
the 1970s. 

Practical time constraints on algorithmic solutions formed a vital aspec t 
of Turing's wartime work. It seems quite possible that he was consulted by 
GCHQ after 1948 about the use of computers for large-scale problems, such 
as the famous Venona problem of Soviet messages which was the top Anglo­
American priority in that period. If so, it is also possible that research in 
large-scale efficient computer-based searching and sorting would have brought 
him to complexity theory ideas. 

Turing's wartime work mainly lay in probability theory and Bayesian 
statistics. Afterwards he left it to Jack Good to write up a civilian version 
of his theory, and he made no effort to pursue the para.llel of his work with 
Shannon's information theory. But possibly he would one day have gone on 
to combine his knowledge of computation and probability: in particular he 
had left the concept of randomness oddly informal. He described machines 
with "random elements" but these were left to Shannon and others in 1956 
work to define properly [13]. 
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Looking further ahead, the ideas of Gregory Chaitin on randomness and 
computability give a picture of a field Thring might have opened - even if 
not necessarily agreeing with all Chaitin's views. 

A minor feature of Thring's postwar work, but one that might have blos­
somed with longer life, is the application of computing methods in pure math­
ematics. His colleague Max Newman was very quick to exploit the Mersenne 
Prime problem to illustrate the power of computation, and discussed very ad­
vanced ideas at the inauguration of the Manchester computer [24] in the use 
of probabilistic methods in algebra and number theory. Probabilistic primal­
ity testing, as used in public-key cryptology today, might have been working 
much earlier in Turing's hands. 

He might also have made powerful advances in cryptology itself. It is 
striking how he made general statements about this field, and we do not 
know where his thoughts were leading. In a 1936 letter [29] he reported to 
his mother from Princeton: 

I have just discovered a possible application of the kind of thing I 
am working on at present. It answers the question "What is the most 
general kind of code or cipher possible," and at the same time (rather 
naturally) enables me to const ruct a lot of particular and interesting 
codes. 

This tantalizing statement, with its fascinating link between computabil­
ity and cryptology, leaves us only wanting to know the answer Thring found 
to his question, and the identity of the particular and interesting codes. Pos­
sibly the latter were related to Thring's 1937-8 cryptological work, which 
was reported to me by Dr Malcolm McPhail in 1978 in the following terms 
(see [20, p. 138]): 

... he would multiply the number corresponding to a specific mes­
sage by a horrendously long but secret number and transmit the 
product. The length of the secret number was determined by the re­
quirement that it should take 100 Germans working eight hours a day 
on desk calculators 100 years to discover the secret factor by routine 
search. Thring actually designed an electric multiplier . . 

Again, we are left wondering what" the scheme actually was (for multipli­
cation is too simple), and what was his theory of its security It is by no means 
clear wha.t Thring was doing, and he may well have had many advanced ideas 
that were never published. In 1950 he divulged :::l(j]: 

I have set up on the Manchester computer a small programme 
using only 1000 units of storage, whereby the machine supplied with 
one sixteen figure number replies with another. I would defy any­
one to learn from these values sufficient about the programme to be 
able to predict any replies to untried values. 
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In the paper this plays the role of showing how a computable process - in 
fact a small program - can be totally surprising, thus making a point about 
the mechanizability of mental processes. But read another way it is a claim 
to a cipher system unbreakable even with chosen plaintext - the modern 
cri terion of securi ty. 

Once again we can only speculate on what he was doing for GCHQ, and 
why GCHQ had tried to get him back to work full-time , until his 1952 ex­
clusion. What might have he done if the political establishment had treated 
him differently? Would his effect on the cold war history of 1954 have been 
as significant as it was on_ the Atlantic war of 1944? Both were great wars of 
information and intelligence. 

There is a science-fiction story by the writer Greg Egan [14], which starts 
on a political footing, discussing what might have happened if Alan Turing 
had been treated differently by his rulers, and has all sorts of imaginative 
elements, including a dialogue with the theologian C. S. Lewis. But it goes 
on to focus on scientific advances by and around a counter-factual Turing 
of the late 1950s. An important point is that it correctly introduces a focus 
on fundamental physics, a point to which I shaJl return in concluding this 
survey. The story is called Oracle, a reference t o the uncomputable oracle 
of Turing's 1938-9 paper on ordinal logics [31J. Roughly speaking, an oracle 
has to contain an infinite amount of information in a finite space, so as to be 
able to solve a problem unsolvable by any Turing machine, e.g. to supply on 
demand the answer to the halting problem for every Turing machine. In this 
excerpt a fictional character links the oracle with time travel: 

... "Time travel," Helen said, "gives me the chance to become an 
Oracle. There's a way to exploit the inability to change your own 
past, a way to squeeze an infinite number of timelike paths - none 
of them closed, but some of them arbitrarily near it - into a finite 
physical system. Once you do that, you can solve the halting problem 

" 

2 Church's Thesis and Copeland's T hesis 

This brings me naturally to B. J. Copeland's influential views on what Turing 
would have done, because he has also raised the prospect of actually building 
such oracles - not as science fiction, but as a serious possibility for future 
technology. This is the prospectus of so-called hypercomputation. Moreover, 
he and his colleague D. Proudfoot have associated these ambitions with Tur­
ing's views and given the impression that these are lost ideas of Turing's 
which can now be recovered and perhaps implemented. 

There is a very general sense in which I agree with Copeland: the phys­
ical world should not be assumed computable without further investigation . 
This point was made long ago by Chaitin 12J and no doubt by many others. 
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we should now be more 
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49 What Would Alan Turing Have Done After 1954? 

not only within the mainstream of mathematical logic, but reflecting the 
description of Turing's work that Church himself gave. Although Turing's 
description of the Turing machine was couched in terms of imitating a human 
being following some procedure, Church characterized computable functions, 
when introducing them to the world in the Journal of Symbolic Logic, in 
these words [3]: 

The author [i.e. Turing] proposes as a criterion that an infinite 
sequence of digits 0 and 1 be "computable" that it shall be possible 
to devise a computing machine, occupying a finite space and with 
working parts of finite size, which will write down the sequence to any 
desired number of terms if allowed to run for a sufficiently long time. 
As a matter of convenience, certain further restrictions are imposed 
on the character of the machine, but these are of such a nature as 
obviously to cause no loss of generality - in particular, a human 
calculator, provided with pencil and paper and explicit instructions, 
can be regarded as a kind of Turing machine. 

Thus Church described computable functions as those that could be per­
formed by some machine. Church drew no distinct line between the human 
being following a rule, and the action of a finite machine. (If anything, the 
words "in particular" suggest that Church conceived of a human calculator as 
the most powerful example of a machine.) Church offered no hint of specula­
tion about machines that could exceed the power of Turing machines. In fact, 
Church's characterization of computability actually excluded this possibility. 

Church was famous for meticulous clarity, and he was supervising Turing's 
Ph.D. at Princeton when he wrote this review, so I cannot believe he made 
this statement lightly, in ignorance or defiance of Turing's views. Furthermore, 
he repeated it in 1940 [5] when he knew all about the Turing "oracles" that 
Copeland thinks are "machines" standing in contradiction to the "common 
view." 

It appears that the background to Copeland's assertion is the desire to 
maintain simultaneously that so-called "hypercomputing" machines can be 
built, and that the Church-Turing thesis is correct. This position can only be 
maintained if Church's thesis was never intended to apply to machines. The 
readership of Scientific American was informed [8J that it was "a myth" that 
Church's thesis referred to machines, and that 

In truth, Church and Turing claimed only that a universal Turing 
machine can match the behavior of any human mathematician work­
ing with paper and pencil in accordance with an algorithmic method 
- a considerably weaker claim that certainly does not rule out the 
possibility of hypermachines. 

But the primary characterization of Turing machines in [3 ~, as given above, 
shows that Church made no such restriction. Indeed, had Church set out to 
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cultivate amongst his readers the "myth" denounced by Copeland and Proud­
foot, he could hard ly have done so more effectively. Copeland in [6] quotes 
a secondary statement from Church [4] which employs the expression "an 
arbitrary machine," and asserts that what Church meant was only that the 
Turing machine concept or its equivalents would have arbitrary elements in 
their technical formulation. In mathematical parlance, however, the expres­
sion "an arbitrary machine" simply means "any machine whatever," and if 
there were any doubt about this interpretation one need only look at the 
primary statement by Church as quoted above . 

It is worth standing back to see the context in a little more generality, since 
the point at issue here does not in fact depend on the exact words used by 
Turing or Church; it stems from the very nature of what was being addressed 
by Turing's theory of mind and machine. The problem that faced Turing in 
1936, as it again faced him in his theory of "machine intelligence" (see [22] 
for a recent survey) is that of whether machines can do as much as the mind. 
This problem is not, of course , Turing's alone: it is a fundamental problem 
of science, and whether we study Codel or Penrose , Lucas or Hofstadter, 
Searle or Dennett , everyone agrees that the basic question is whether human 
minds are super-mechanical, though there is widespread disagreement about 
the answer. Copeland and Proudfoot alone suggest that the problem is t he 
other way round, giving the impression that Turing defined computability as 
he did, because there might be superhuman machines. Copeland offers in [6] 
as explanation for Turing's definition of computability: 

For among a machine's repertoire of a tomic operations there may 
be those that no human being unaided by machinery can perform. 

But this consideration is entirely foreign to Turing's thought. This sentence 
represents a quite unjustified proj ection of Copeland 's "hypercomputation" 
thesis into the classical formulations of 1936. 

A possibly confuSing element is that Turing defined an entity called an 
"oracle-machine," and indeed described an oracle-machine as "a new type 
of machine." Is this a contradiction? No: Turing's "oracle-machine," defined 
for the purpose of exploring the uncomputable within mathematical logic, 
involves a generalized use of the word "machine" for something tha t is only 
partly mechanical. (In contrast, of course, Church's thesis concerns the scope 
of the purely mechanical.) The oracle formalizes non-mechanical steps, which 
can (if given any extra- mathematica l interpretation at all) be compared with 
the "intuition" of seeing the truth of a formally unprovable Codel statement. 
The oracle is a non-mechanical entity inside a partially mechan ical enti ty, the 
oracle-machine. Any doubt about what Turing meant should be dispelled by 
the clear statement in [31] that: 

We shall not go any further into the nature of this oracle apart 
from saying that it cannot be a machine. 
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The nature, and indeed the essential purpose of the oracle, is that it is 
not a machine. There is a precedent for Turing's use of the word "machine" 
in this generalized sense: the "choice-machines" defined in Turing's original 
great paper [30], which ask for a human operator's decisions - by definition , 
not mechanical. These choice-machines also are only partly mechanical. If 
the winner of a Turing Test for machine intelligence were revealed to have a 
human choice-maker hidden inside the computer, we should not consider the 
victory much of an achievement. Likewise, if "oracle-machines" were allowed 
in deciding the Entscheidungsproblem, the question would become trivial. In 
both cases the whole point lies in whether the task can or cannot be done by 
purely mechanical means, and it -stands as Turing's great achievement that 
over sixty years later his encapsulation of the "purely mechanical" by the 
Turing machine definition still holds sway. 

Summarizing, there is nothing in Turing's "ground-breaking paper of 
1939" [31] to justify Copeland's sensational technological and economic 
prospectus about "constructing" oracle-machines. 

Nor is there anything in Turing's later work to support Copeland 's 
prospectus for an oracle-based hyper-computer revolution. In Turing's 1948 
report [34], which contained an extended account of "machines" in general, 
oracle-machines never appeared in the analysis. We can also look again 
at Gandy's 1954 letter [17] for evidence regarding Turing's legacy. Gandy 
supplied Newman with a long section on Turing's views on the reception of 
his ordinal logics [31]. This has been cited by Copeland and Proudfoot [10] 
to suggest that Turing thought his 1939 paper had not been given the 
attention it deserved. Indeed he did , bu t Gandy's extensive remarks on 
Turing's views all referred to his much more advanced ideas in mathematical 
logic. They did not mention oracles, let alone suggest something to do with 
seeing oracles as objects that might exist. Martin Davis emphasizes, in this 
volume, as does Feferman [16], that the "oracle" plays only a very small part 
in [31]. 

Copeland has also commended in [6] the later contribution of Gandy to 
this question, stressing that in [18] Gandy distinguished "Thesis M" (that 
anything done by a machine is computable) from Church 's Thesis. Gandy 
undertook a rigorous definition of the concept of machine, with this distinc­
tion in mind. Copeland does not observe, however that (1) Gandy never even 
considered counting an "oracle-machine" in this category and that (2) Gandy's 
results lend support to what Church assumed in 1937, viz. that "purely me­
chanical" does indeed imply "computable." It is not surprising that Gandy 
never considered oracle-machines in his analysis of the mechanical: he fully 
reflected Turing 's thought as his student and legatee , as well as representing 
the tradition of mathematical logic. 

We now pass to Turing's famous 1950 paper [36], which summarizes Tur­
ing's post-1945 claim that the action of the brain must be computable, and 
therefore can be simulated on a computer . I have already referred to how 
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Turing used a pseudo-random program to exemplify how a machine can cre­
ate a "surprise." This was entirely typical of his argument that something 
apparently non-mechanical can in fact be readily computable. But in fact 
this example also illustrates how his 1950 argument was not merely about 
the sufficiency of computable functions. Turing's argument was that a totally 
finite machine (with a fixed finite store) would suffice to simulate the finite 
brain. Thus, in that cipher-based example, Turing emphasized how small a 
store was needed to embody the effect of a "surprise" This point leads me 
to make a further defense against the charges made in [7] and [lll · For there 
Copeland asserted that I had overlooked an important reference to uncom­
putable operations in Thring 's 1950 paper [36], asserting that therein one 
might find Thring saying that : 

An example of a discrete-state machine whose behavior cannot be 
calculated by a universal Thring machine is a digita l computer with 
an infinite-capacity store and what Turing calls a "random element". 
(pp. 438-439) 

But in fact, an inspection of Thring's a rgument shows that the "infinite 
store" just corresponds to the unbounded tape of the Thring machine. It is the 
arena within which computable operations are defined , not something going 
beyond computability. As for the "random element," Thring specifically gave a 
pseudo-random (i.e. entirely computable) illustration of it, namely the digits 
of Jr. Thus, these references in Thring's paper only corroborate the fact that 
Turing saw mental processes as falling within the scope of the computable. 
In [lll Copeland further argues: 

Hodges ... fails to include the crucial words "discrete state ma­
chines ... can be described by such tables provided they have only a 
finite number of possible states." 

But this qualification of "finitely many states" is not crucial at all. In 
his 1950 paper Thring gave the philosophical world a rather abbreviated 
description of computability which avoided bringing in the concept of the 
infinitely long "tape." Instead, his discussion was focused on totally finite 
machines, which do not need to use any tape; or in other words, the states 
of the tape are absorbed into the states of the machine. (This is why Thring 
had to refer, rather awkwardly, to an "infinite store" when referring to the 
full definition of computability.) The condition Copeland asserts to be so 
important is the condition on a process to be representable by a tapeless 
machine. This is a much more restrictive condition than computability. (A 
Thring machine has only finitely many configurations, but in general will have 
an unbounded number of possible states of its tape.) 

Again we might well stand back a little to see this in context. The concept 
of computability takes its power from the fact that it successfully generalizes 
the concept of a totally finite machine, to one which still has "finite means" but 
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is allowed unlimited time and space for marking a tape. Copeland's blurring 
of the distinction between the state table of a totally finite machine, and the 
finite table of behavior of a Turing machine misses the essential point of the 
definition of computability. 

To summarize: this condition does not allude to uncomputable functions 
in any way. On the contrary, Turing's context shows that in 1950 his focus 
was on the successful evocation or at least imitation of intelligence within a 
finite subset of computable functions. 

3 Computability and Quantum Physics 

But now let us move on past 1950, and come finally to the physics that I think 
the most telling and novel aspect of what Turing had started to do and where 
he might have gone on to far more if he had lived. This deserves to be better 
known , and here I must acknowledge Copeland more positively. Recently he 
has published the full script of Turing's 1951 BBC radio talk [37], prefacing 
it with an analysis [9]. This talk mostly paraphrased Turing's famous 1950 
paper [36] in a form suitable for a short talk, but, as Copeland usefully points 
out, it had a significant new feature. It had a mention of quantum mechanics, 
introduced specifically as a loophole in Turing's otherwise general argument 
that the action of the brain must be computable. Turing explained that for 
the success of this argument it is 

... necessary that this machine [the brain] should be of the sort 
whose behavior is in principle predictable by calculation. We cer­
tainly do not know how any such calculation should be done, and 
it was even argued by Sir Arthur Eddington that on account of the 
indeterminacy principle in quantum mechanics no such prediction is 
even theoretically possible. 

This is the only sentence in all Turing's work that points to something 
physical that may not be reducible to computable action. But it is a signifi­
cant one. It runs against what Turing had said about simulating the nervous 
system by a computer in [36J. And here, exceptionally, Turing does not appeal 
to pseudo-random simulation as a satisfactory discussion of "randomness." 

This discussion has nothing whatever to do with oracles. There is no 
mention whatever of infinite information sources in here. (Note also that 
Turing's thought is still in the context of wondering whether any machine can 
do as much as the mind, and not in the spurious reverse problem posited by 
Copeland!) The question raised by Tming is to do with fundamental physics: 
is the physical space-time of quantum mechanical processes, with its so-called 
Heisenberg uncertainty principle, compatible with a Turing machine mode!? 

This sentence, taken seriously, makes a link between the computability 
of mental processes and Turing's late work in physics. Although I described 
this late physics work in [20], page 495, and noted Tur ing's harking back to 
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Eddington, I had not seen the importance of this possible connection between 
fundamental physics and the question of the computability of the mind. To 
describe more satisfactorily this work of 1953-4, I return yet again to Gandy's 
1954 letter [17]. In fact, it was to this subject, rather than to computer science, 
mathematics, logic or morphogenesis, that Gandy devoted the most attention: 

During this spring [1954] he spent some time inventing a new 
quantum mechanics ... it did show him at his most lively and inven­
tive; he said "Quantum mechanists always seem to require infinitely 
many dimensions; I don't think I can cope with so many, I'm go­
ing to have about 100 or so - that ought to be enough don't you 
think?" Then he produced a slogan "Description must be non-linear, 
prediction must be linear" 

A slightly more se'rious contribution... uses "the Turing Para­
dox"; it is easy to show using standard theory that if a system starts 
in an eigenstate of some observable, and measurements are made of 
that observable N times a second , then, even if the state is not a 
stationary one, the probability that the system will be in the same 
state after , say, 1 second, tends to one as N tends to infinity; i.e. that 
continual observation will prevent motion. 

His "non-linear" description in quantum mechallics would have implied 
some essentially new theory, and the word "measurement" tells us the focus 
of his attempted innovation. Turing was referring here to the puzzle of the 
reduction, collapse, or measurement process in quantum mechanics. No-one 
even now can say when or how it occurs - as Turing was pointing out with 
his Paradox. 

The problematic foundations of quantum mechanics were not new to Alan 
Turing. His interest went back to 1928. Then he had read Eddington's The 
Nature of the Physical World, with Christopher Morcom his beloved school­
friend. In fact Alan Turing was one of the first serious readers of von Neu­
mann's 1932 monograph on the Mathematical Foundations of Quantum Me­
chanics. It was his school prize book, given after Christopher Morcom had 
suddenly died in 1930. In 1933 Alan Turing reported of it, "My prize book 
from Sherborne is turning out very interesting, and not at all difficult reading, 
although the applied mathematicians seem to find it rather strong ." [28] 

Von Neumann's axioms distinguished the U (unitary evolution) and R 
(reduction) rules of quantum mechanics. Now, quantum computing so far (in 
the work of Feynman, Deutsch, Shor, etc.) is ba..c;ed on the U process and so 
computable. It has not made serious use of the R process: the unpredictable 
element that comes in with reduction, measurement, or collapse of the wave 
function. Maybe Turing, if he had lived, would have developed quantum com­
puting - but from the scraps that have survived it appears that it was the 
mystery of the R process that really intrigued him. 

Recently the R process has been studied with fr esh experimental interest, 
and in my view these more recent investigat ions give the flavor of where Tur­
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ing 's thought might have gone. Elitzur and Vaidman [15] have shown that 
the logic of "reduction" can produce an extraordinary result. Suppose a "live 
bomb" is a device which effects "measurement" or "reduction," whilst a "dud 
bomb" is a device which does not . Then the type of device can be tested by 
observing the final state of a photon which hits the device. Using classical 
measurement, the determination would amount to seeing whether or not the 
device "exploded." With a quantum measurement it is possible to deduce 
that the device was "live" without any explosion taking place' Quantum me­
chanics should not be thought of as necessarily introducing uncertainty into 
a classical picture: in this example it implies the testing wjth certainty of a 
counterfactual story - what would have lJappened if the photon had hit the 
detonator of the live bomb. The logical structure here is no different from 
that known to von Neumann in 1932, but modern technology with perfect 
mirrors and the detection of single photons makes it possible to investigate 
that logic far more stringently. In particular, Anton Zeilinger and co-workers 
in Vienna are conducting ingenious experiments designed to tes t the limits of 
the U and R rules. These investigations do not analyze the internal dynam­
ics of the R process and explain when, how, and indeed whether it actually 
happens, which Turing was probably trying to do. But they are probing the 
logic of quantum mechanics in a way that would have fascinated him. 

Turing was probably trying to make quantum mechanics fully predictable, 
which no-one has been able to do, and perhaps also, as Gandy hinted in his 
note, more finite. That, if achieved, would have filled in the loophole in his 
argument about mechanizing thought. If so, Turing's agenda was in a sense 
the opposite of that of Penrose [25,26]. Penrose has argued that the R process 
must be uncomputable because thought cannot be computable - as follows 
from taking a very strong view of the implications of Godel's theorem. But 
Turing is on common ground with Penrose in taking quantum mechanics 
and Godel's theorem very seriously in discussing the question of Artificial 
Intelligence. 

There are still open questions about quantum mechanics, almost as open 
as when Alan Turing was twenty and wrote his first ideas about the mind [27]: 

It used to be supposed in science that if everything was known 
about the Universe at any particular moment then we can predict 
what it will be all through the future ... More modern science how­
ever has come to the conclusion that when we are dealing with the 
atoms and electrons . .. We have a will which is able to determine 
the action of atoms probably in a small portion of the brain ... 

By "modern science" he meant quantum mechanics, as he had learnt at 
school from Eddington. At that stage he thought of there being some un­
known quantum mechanical law which accounted for the action of human 
will. Presumably he changed his mind, since the emphasis of all his post-war 
work was so strongly towards eliminating such concepts as will and conscious­
ness. But we cannot tell what he might have gone on to think after 1954. In 
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his last years, he insisted on his individuality and his freedom . As a human 
being, he actually took his own will and consciousness very seriously, and this 
is one of the great paradoxes of his life and his work. 

Church's thesis and the TUring machine are rooted in the concept of "do­
ing one thing at a time" But we do not really know what "doing" is - or 
time - without a complete picture of quantum mechanics, and the relation­
ship between the still mysterious wave-function and macroscopic observa.tion. 
Alan TUring found his greatest strength when studying the interfa.ces between 
conventional compartments of scientific thought, and might have come up 
with something between logic and physics that no-one could possibly have 
predicted. 
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