Chapter 7

Securing Information Systems

LEARNING TRACK 5: SOFTWARE VULNERABILITY AND RELIABILITY

System Quality Problems: Software and Data

In addition to disasters, viruses, and security breaches, defective software and data also
pose a constant threat to information systems, causing untold losses in productivity. An
undiscovered error in a company’s credit software or erroneous financial data can
result in losses of millions of dollars. The Sustainable Computing Consortium estimat-
ed that error-ridden or flawed software cost businesses worldwide $175 billion in 2001
alone (Horowitz, 2003). A hidden software problem in AT&T’s long-distance system
brought down that system, halting and interfering with the New York—based financial
exchanges at a cost of billions of dollars worth of business around the country for a
number of hours. Modern passenger and commercial vehicles increasingly depend on
computer programs for critical functions. A hidden software defect in a braking system
could result in the loss of lives.

BUGS AND DEFECTS

A major problem with software is the presence of hidden bugs or program code
defects. Studies have shown that it is virtually impossible to eliminate all bugs from
large programs. The main source of bugs is the complexity of decision-making code.
Even a relatively small program of several hundred lines will contain tens of decisions
leading to hundreds or even thousands of different paths. Important programs within
most corporations are usually much larger, containing tens of thousands or even mil-
lions of lines of code, each with many times the choices and paths of the smaller pro-
grams. Such complexity is difficult to document and design—designers may document
some reactions incorrectly or may fail to consider some possibilities. Studies show that
about 60 percent of errors discovered during testing are a result of specifications in the
design documentation that were missing, ambiguous, in error, or in conflict.

Zero defects, a goal of the total quality management movement, cannot be achieved
in larger programs. Complete testing simply is not possible. Fully testing programs that
contain thousands of choices and millions of paths would require thousands of years.
Eliminating software bugs is an exercise in diminishing returns because it would take
proportionately longer testing to detect and eliminate obscure residual bugs
(Littlewood and Strigini, 1993). Even with rigorous testing, one could not know for
sure that a piece of software was dependable until the product proved itself after much
operational use. The message? We cannot eliminate all bugs, and we cannot know with
certainty the seriousness of the bugs that do remain.

THE MAINTENANCE NIGHTMARE

Another reason that systems are unreliable is because computer software traditionally
has been a nightmare to maintain. Maintenance, the process of modifying a system in
production use, is the most expensive phase of the systems development process. In
most organizations nearly half of information systems staff time is spent maintaining
existing systems.

The most common, most severe,
and most expensive system
errors develop in the early
design stages. They involve
faulty requirements analysis.
Errors in program logic or syn-
tax are much less common, less
severe, and less costly to repair
than design errors.

Source: Alberts, 1976.

CHAPTER 7: Learning Track 5 2

Why are maintenance costs so high? One major reason is organizational change.
The firm may experience large internal changes in structure or leadership, or change
may come from its surrounding environment. These organizational changes affect
information requirements. Another reason appears to be software complexity, as meas-
ured by the number and size of interrelated software programs and subprograms and
the complexity of the flow of program logic among them (Banker, Datar, Kemerer, and
Zweig, 1993). A third common cause of long-term maintenance problems is faulty sys-
tems analysis and design, especially analysis of information requirements. Some stud-
ies of large TPS systems by TRW, Inc., have found that a majority of system errors—
64 percent—result from early analysis errors (Mazzucchelli, 1985).

Figure 7-1 illustrates the cost of correcting errors based on the experience of con-
sultants reported in the literature. If errors are detected early, during analysis and
design, the cost to the systems development effort is small. But if they are not discov-
ered until after programming, testing, or conversion has been completed, the costs can
soar astronomically. A minor logic error, for example, that could take 1 hour to correct
during the analysis and design stage could take 10, 40, and 90 times as long to correct
during programming, conversion, and postimplementation, respectively.

FIGURE 7-1 The cost of errors over the systems development cycle.

Estimate of the relative cost of repairing errors based on consultant reports and the o
popular trade literature

Costs

Analysisno Programming Conversion Postimplementation
andn
design

RESOURCE ALLOCATION DURING SYSTEMS
DEVELOPMENT

Views on resource allocation during systems development have changed significantly
over the years. Resource allocation determines the way the costs, time, and personnel
are assigned to different phases of the project. In earlier times, developers focused on
programming, with only about 1 percent of the time and costs of a project being devot-
ed to systems analysis (determining specifications). More time should be spent in spec-
ifications and systems analysis, decreasing the proportion of programming time and
reducing the need for so much maintenance time. Documenting requirements so that
they can be understood from their origin through development, specification, and con-
tinuing use can also reduce errors as well as time and costs (Domges and Pohl, 1998).
Current literature suggests that about one-quarter of a project’s time and cost should be
expended in specifications and analysis, with perhaps 50 percent of its resources allo-

CHAPTER 7: Learning Track 5

cated to design and programming. Installation and postimplementation ideally should
require only one-quarter of the project’s resources. Investments in software quality ini-
tiatives early in a project are likely to provide the greatest payback (Slaughter, Harter,
and Krishnan, 1998).

SOFTWARE METRICS

Software metrics can play a vital role in increasing system quality. Software metrics
are objective assessments of the system in the form of quantified measurements.
Ongoing use of metrics allows the IS department and the user to jointly measure the
performance of the system and identify problems as they occur. Examples of software
metrics include the number of transactions that can be processed in a specified unit of
time, online response time, the number of payroll checks printed per hour, and the
number of known bugs per hundred lines of code.

For metrics to be successful, they must be carefully designed, formal, and objective.
They must measure significant aspects of the system. In addition, metrics are of no
value unless they are used consistently and users agree to the measurements in
advance.

TESTING

The stages of testing required to put an information system into operation are program
testing, system testing, and acceptance testing. Early, regular, and thorough testing will
contribute significantly to system quality. In general, software testing is often misun-
derstood. Many view testing as a way to prove the correctness of work they have done.
In fact, we know that all sizable software is riddled with errors, and we must test to
uncover these errors.

Testing begins at the design phase. Because no coding exists yet, the test normally
used is a walkthrough—a review of a specification or design document by a small
group of people carefully selected based on the skills needed for the particular objec-
tives being tested. Once coding begins, coding walkthroughs also can be used to
review program code. However, code must be tested by computer runs. When errors
are discovered, the source is found and eliminated through a process called debugging.

Electronic commerce and electronic business applications introduce new levels of
complexity for testing to ensure high-quality performance and functionality. Behind
each large Web site, such as Amazon.com, eBay, or E¥TRADE, are hundreds of
servers, thousands of miles of network cable, and hundreds of software programs, cre-
ating numerous points of vulnerability. These Web sites must be built and tested to
make sure that they can withstand expected—and unexpected—spikes and peaks in
their loads. Both Web site traffic and technical components, such as hardware, software
and networks, must be considered during application development and during testing.

To test a Web site realistically, companies need to find a way to subject the Web site
to the same number of concurrent users as would actually be visiting the site at one
time and to devise test plans that reflect what these people would actually be doing.
For example, a retail e-commerce site should create a test scenario where there are
many visitors simply browsing and some making purchases.

Testing wireless applications poses additional challenges. Many wireless and con-
ventional Web applications are linked to the same back-end systems so the total load
on those systems will increase dramatically as wireless users are added. Automated
load testing tools that simulate thousands of simultaneous wireless Web and conven-
tional Web browser sessions can help companies measure the impact on system per-
formance.

Many companies delay testing until the end of the application development phase,
when design decisions have been finalized and most of the software program code has
been written. Leaving Web site performance and scalability tests until the end of the
application development cycle is extremely risky because such problems often stem

CHAPTER 7: Learning Track 5

from the fundamental workings of the system. To minimize the chance of discovering
major structural problems late in the system’s development process, companies should
perform this testing well before the system is complete. This makes it possible to
address performance bottlenecks and other issues in each application level or system
component before everything is integrated.

