Chapter 8: Bits and the "Why" of Bytes:

 Representing Information DigitallyFluency with Information Technology Third Edition
by
Lawrence Snyder

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Figure 8.1. Three symbol assignments for a telephone keypad.

The Fundamental Representation of Information

- The fundamental patters used in IT come when the physical world meets the logical world
- The most fundamental form of information is the presence or absence of a physical phenomenon
- In the logical world, the concepts of true and false are important
- By associating true with the presence of a phenomenon and false with its absence, we use the physical world to implement the logical world, and produce information technology

Digitizing Discrete Information

- Digitize: Represent information with digits (normally base 10 numerals 0 through 9)
- Limitation of Digits
- Alternative Representation: Any set of symbols could represent phone number digits, as long as the keypad is labeled accordingly
- Symbols, Briefly
- Digits have the advantage of having short names (easy to say)
- But computer professionals are shortening symbol names (exclamation point is pronounced "bang")

Ordering Symbols

- Advantage of digits for encoding info is that items can be listed in numerical order
- To use other symbols, we need an ordering system (collating sequence)
- Agreed order from smallest to largest value
- In choosing symbols for encoding, consider how symbols interact with things being encoded

Analog vs. Digital

- Analog is continuous data/information - Sound waves

Analog vs. Digital

- Digital is discrete data/information
- Many distinct samples of data
- Stored in binary (0's and 1's)
- All data in a computer is represented in binary

A Binary System

- Two patterns make a binary system
- Base 2 (0 or 1)
- The basic binary unit is known as a "bit" (short for binary digit)
- 8 bits are grouped together to form a byte
- Memory accessed by byte addresses
- We can give any names to these two patterns as long as we are consistent
- PandA (Presence and Absence can represent 1 and 0 , respectively)

Encoding Bits on a CD-ROM

The PandA Representation

- PandA is the mnemonic for "presence and absence"
- It is discrete (distinct or separable)-the phenomenon is present or it is not (true or false; 1 or 0). There in no continuous gradation in between.

Table 8.1 Possible interpretations of the two PandA patterns	
Present Absent True False 1 0 On Off Yes No + White Black Against For Yin Yang Bart Lisa ... \ldots	

Encoding Bits on a CD-ROM

Bits in Computer Memory

- Memory is arranged inside a computer in a very long sequence of bits (places where a phenomenon can be set and detected)
- Analogy: Sidewalk Memory
- Each sidewalk square represents a memory slot (bit), and stones represent the presence or absence
- If a stone is on the square, the value is 1 , if not the value is 0

Alternative PandA Encodings

- There are other ways to encode two states using physical phenomena
- Use stones on all squares, but black stones for one state and white for the other
- Use multiple stones of two colors per square, saying more black than white means 0 and more white than black means 1
- Stone in center for one state, off-center for the other - etc.

Hex Explained

- Recall in Chapter 4, we specified custom colors in HTML using hex digits
- e.g.,
- Hex is short for hexadecimal, base 16
- Why use hex? Writing the sequence of bits is long, tedious, and error-prone

The 16 Hex Digits

$$
\begin{gathered}
0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F \\
-A=10, B=11, \ldots, F=15
\end{gathered}
$$

- Sixteen values can be represented perfectly by 4 -bit sequences $\left(2^{4}=16\right)$
- Changing hex digits to bits and back again:
- Given a sequence of bits, group them in 4's and write the corresponding hex digit
- 01011100
- Given hex, write the associated group of 4 bits

Digitizing Text

- Early binary representation-1 and 0—encoded numbers and keyboard characters
- Now representation for sound, video, and other types of information are also important
- For encoding text, what symbols should be included?
- We want to keep the list small enough to use fewer bits, but we don't want to leave out critical characters

Decimal ASCII Character Set

	Decimal - Character														
	nut	1	SOH	2	STX	3	ETX	4	Eот	5	EnQ		Ack	7	beL
8	BS	9	HT	10	NL	11	vT	12	NP	13	CR	14	so	15	SI
16	DLE	17	DC1	18	DC2	19	DC3	20	DC4	21	NAK	22	SYn	23	ETB
24	CAN	25	EM	26	SUB	27	ESC	28	FS	29	GS	30	RS	31	us
32	SP	33	!	34	"	35	\#	36	\$	37	\%	38	\&	39	
40	(41)	42	*	43	+	44	,	45	-	46	.	47	/
48	0	49	1	50	2	51	3	52	4	53	5	54	6	55	7
56	8	57	9	58	:	59	;	60	<	61	$=$	62	>	63	?
64	(1)	65	A	66	B	67	c	68	D	69	E	70	F	71	G
72	H	73	1	74	J	75	K	76	L	77	M	78	N	79	-
80	P	81	Q	82	R	83	S	84	T	85	U	86	v	87	w
88	x	89	Y	90	z	91	[92	,	93]	94	,	95	
96	-	97	a	98	b	99	c	100	d	101	e	102	f	103	g
104	h	105	i	106	,	107	k	108	1	109	m	110	-	111	-
112	p	113	q	114	r	115	s	116	t	117	u	118	v	119	
120	x	121	y	122	z	123	(124	।	125	\}	126	~	127	DEL

Hex (0-9,A-F)

Decimal	Hex	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0100
7	7	0111
8	8	1000
9	9	1001
10	A	1010
11	B	1011
12	C	1100
13	D	1101
14	E	1110
15	F	1111

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
8.20

Assigning Symbols

- 26 uppercase and 26 lowercase Roman letters, 10 Arabic numerals, 10 arithmetic characters, 20 punctuation characters (including space), and 3 non-printable characters (new line, tab, backspace) $=95$ characters, enough to represent English
- For 95 symbols, we need 7 -bit sequences

$$
-2^{6}=64 \quad 2^{7}=128
$$

- A standard 7-bit code is ASCII(American Standard Code for Information Interchange)

Hexadecimal ASCII Character Set

	Hexadecimal - Character													
00 nut	01	SOH	02	STX	03	EtX	04	еот		EnQ	06	Ack	07	BeL
08 bS	09	нт	0A	NL	OB	VT	OC	NP	OD	CR	OE	so	OF	SI
10 dLe	11	DC1	12	DC2	13	DC3	14	DC4	15	NAK	16	SYN	17	етb
18 CAN	19	ем	1A	SUB	1B	ESC	1 C	FS	1 D	GS	1 E	RS	1 F	US
20 SP	21	!	22	"	23	\#	24	\$	25	8	26	\&	27	,
28 (29)	2A	*	2B	+	2 C	,	2D	-	2 E	.	2 F	/
300	31	1	32	2	33	3	34	4	35	5	36	6	37	7
388	39	9	3 A	:	3 B	;	3 C	<	3D	$=$	3 E	>	3 F	?
40 @	41	A	42	в	43	c	44	D	45	E	46	F	47	G
48 H	49	I	4 A	J	4 B	K	4 C	L	4 D	M	4 E	N	4 F	-
50 P	51	Q	52	R	53	s	54	T	55	U	56	v	57	w
$58 \times$	59	Y	5A	z	5B	[5 C	\}	5D		5 E	,	5F	
60	61	a	62	b	63	c	64	d	65	e	66	f	67	g
68 h	69	i	6 A	j	6 B	k	6 C	,	6 D	m	6 E	n	6 F	-
70 p	71	q	72	r	73	s	74	t	75	u	76	v	77	w
78 x	79	y	7A	z	7 B	1	7 C		7 D		7 E	~	7 F	

Extended ASCII: An 8-bit Code

- By the mid-1960's, it became clear that 7-bit ASCII was not enough to represent text from languages other than English
- IBM extended ASCII to 8 bits (256 symbols)
- Called "Extended ASCII," the first half is original ASCII with a 0 added at the beginning of each group of bits
- Handles most Western languages and additional useful symbols

ASCII Coding of Phone Numbers

- How would a computer represent in its memory, the phone number 888555 1212?
- Encode each digit with its ASCII byte

NATO Broadcast Alphabet

- The code for broadcast communication is purposefully inefficient, to be distinctive when spoken amid noise

Table 8.4							NATO broadcast alphabet designed not to be minimal
A	Alpha	H	Hotel	O	Oscar	V	Victor
B	Bravo	I	India	P	Papa	W	Whiskey
C	Charlie	J	Juliet	Q	Quebec	X	X-ray
D	Delta	K	Kilo	R	Romeo	Y	Yankee
E	Echo	L	Lima	S	Sierra	Z	Zulu
F	Foxtrot	M	Mike	T	Tango		
G	Golf	N	November	U	Uniform		

Unicode

- Several languages around the world have more than 256 individual characters
- Unicode uses 16 bits; $2^{16}=65536$ characters
$-1^{\text {st }} 7$ bits (128 chars) are ASCII chars
- Different locales - different characters beyond $1^{\text {st }} 7$ bits

The Oxford English Dictionary

- Extended ASCII encodes letters and characters well, but most documents contain more than just text.
- Format information like font, font size, justification
- Formatting characters could be added to ASCII, but that mixes the content with the description of its form (metadata)
- Metadata is represented using tags, as in HTML

Using Tags to Encode

- Oxford English Dictionary (OED) printed version is 20 volumes
- We could type the entire contents as ASCII characters (in about 120 years), but searching would be difficult
- Suppose you search for the word "set." It is included in many other words like closet, horsetail, settle, etc.
- How will the software know what characters comprise the definition of set?
- Incorporate metadata
 tive bits oprased an 16 a unirin a a compuré
1904 Blacuw \& Brooks in IBM Sysems JrmiL IIL. 122 A An-bit unit of information is fundamenal to
 and double words respectively 1964 IBM JmL. Rs \& Dovelopm. VIII. $97 /$ When a byte of data appears from an VO device, the CPU is seized, dumped. used and restored. 1967 P. A. Stark Digital Compuacr Progziomming xix 351 the normal operations in fixed poinr are done on four byics at a second.

 the systen/ $360</$ /ed>. bes. A consecutive group of <i>nk/i> such units constitutes a field of length $\langle i>n</ 1\rangle$. bes.Fixed-length fields of length one, two, four, and eight are terned bytes, halfwords, words, and double words respectively
 veized, dumped, used and reatored.</qtए</q><q><q\$>1967</qd> casp. A. stark ODDigital Conputer Progranning</u> <lexixix. 351/</10> eqt>The normal operations
 34,160 to 192,000 bytes per second.</qt>/q/q</qp>/es

Figure 8.4 The OED entry for the word bye, together with the representation of the
entry in its digitized form with tags.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Structure Tags

- Special set of tags was developed to specify OED's structure
- <hw> means headword, the word being defined
- Other tags label pronunciation <pr>, phonetic notation <ph>, parts of speech <ps>
- The tags do not print. They are there only to specify structure so the computer knows what part of the dictionary it is looking at

Why "BYTE"

- Why is BYTE spelled with a Y?
- The Engineers at IBM were looking for a word for a quantity of memory between a bit and a word (usually 32 bits). Bite seemed appropriate, but they changed the it to a y, to minimize typing errors.

