Chapter 8

Representing Information Digitally

* Multimedia computing

1. Seamless combination of these categories of information
2. Note the gradual merging of technologies that deal with these different categories - TV, phone, books, mail, music, internet, etc.

Symbolic Representations

* Information: knowledge, facts and meaning
* Categories
a. Numeric information (integers, fractions)
- E.g. CSC101 grades, faculty salaries
b. Textual information (keyboard characters)
- E.g. CS16 class roster, term paper
c. Visual information (pictures, graphics, animation)
- E.g. digital camera picture, original corporate logo
d. Audio information (music, speech)
- E.g. song on CD, digitized inaugural address
e. Instruction information (programs, recipes)
- E.g. source code for MS Word, games, etc.

Symbolic Representation

* Common representation of data - both necessary and inevitable
* Two basic forms of information in the real world
a. Discrete-precise, unambiguous, distinct, finite

1) Text (and other finite symbol systems)
2) Numbers with finite precision 3) Instructions
b. Analog-continuous, infinite
3) Images, graphics, movies (?) 2) Sounds
4) The real number line (unlimited precision)

Symbolic Representation

* How do we digitize?
a. Discrete information-mapping of symbols
b. Analog information - continuous \& infinite, but must have a discrete representation

1) Sampling-selecting a finite subset of data to represent the whole
2) Quantizing - measuring the samples and assigning (possibly approximate) binary values for storage
3) Precision vs. accuracy ("exactness")
4) Possibilities for error
5) More later...

Ethe process of converting information to a binary form is called digitization ■both discrete and analog forms of information may be digitized

Example: Digitizing Images

The two step process for digitizing images:

- sampling the continuous tone image for pixels
- quantizing pixels
pixels samples are averaged

Computer Representation

+ Binary Technology
+ Binary System: Digits are 01
+ True/False; On/Off; Yes/No; Male/Female
+8 bits $--2^{8}$ combinations
+256 unique Combinations
numbering system
■binary digits are called "bits"
■bits are organized into groups, e.g., $8=$ "byte"
+ Limited range / overflow
+ Hexadecimal (base 16)
+ Two Hex Digits: $(0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F)$
$+16^{2}=256$ unique combinations

Example: Digitizing Images

The two step process for digitizing images:

- sampling the continuous tone image for pixels
- quantizing pixels

Problems: Representing Text on a computer

> + Need: One unique binary symbol per character
> + About "95 characters
> +6 bits?
> +7 bits?
> + Which binary pattern for which text symbol?
> + We must all agree
> + ASCII (extended to use 8 -bits)
> + UNICODE
> + Need some thought to "collating" sequence
> + What about formatting codes?

Integers

Integers (Cont.)

+ Binary (Base 2) Numbers
+ Finite Representation (8 digits)
+ What is the maximum value using 8 digits?
$\begin{array}{llllllll}2^{7} & 2^{6} & 2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0} \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
+ Actual value is based on position of each digit

Maximum Byte Value $=128+64+32+16+8+4+2+1=255$

Integers (Cont.)

+ Example Binary Numbers
$2^{7} 2^{6} 2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0}$
11101101
+ Powers of 2
+ Actual value is based on position of each digit
00000011
00000001
00000010

Integers (Cont.)
Doing Math

+ In base 10
24
± 5 Simply add digit position-by-position
29
$\frac{1}{27}$ What about "carry" situations?
$7+5=12$
Enter the first digit value and "carry" the second

Signed Integers

+ Just use highest bit to indicate +1 - sign
+ Simple solution, but
Problems:
- $10000000=>$ Negative Zero??
- Can I subtract using addition?? $-19+5$ or $-6+-12$ 10010011 (-19) 10000110 (-6)
$+\underline{00000101(+5) \quad+10001100(-12)}$
$10011000(-24)$ ¢Errors!! $\rightarrow 00010010(+18)$

Two's Complement
for negative integers

+ Technique for representing negative integers
+ StepA: Complement bits (invert)
+ Step B: Add 1 to the complemented value
+ Interpret the result as the negative of the original

To make a -5 , start with (+5) 00000101
Compliment bits: 11111010
Add 1 to compliment: +1
Final result (-5): 11111011

Real (Decimal) Number Storage

- Real numbers are stored in floating point representation
- a sign
- an exponent
- a mantissa (normalized decimal fraction)
- no digits to the left of the decimal
- first digit to the right of the decimal is nonzero
- Limited precision because most real numbers have an infinite decimal expansion (this holds no matter what number base is used in the representation)

Real Number Storage
Limited Range and Precision Illustrated

Two's Complement
for negative integers

+ Sign bit still used
+ Single representation for zero
+ Try to make a negative o
+ Result is stillo
+ Math works!
$+\operatorname{Try}(-19)+(5)$ example from before
+ "Signed" Integers: Summary
+ If sign bit is o (positive), number is positional
+ If sign bit is 1 (interpret as negative!), so....... Take 2 's complement - then find positive value

Real Number Storage Limited Range and Precision

- There are three categories of numbers left out when floating point representation is used
- numbers out of range because their absolute value is too large (similar to integer overflow)
- numbers out of range because their absolute value is too small (numbers too near zero to be stored given the precision available
- numbers whose binary representations require either an infinite number of binary digits or more binary digits than the bits available

Limited Range and Precision

Some Consequences

- Limited range will invalidate certain calculations
- If integers are involved, this can often be avoided by switching to real numbers
- For real number calculations, this problem arises infrequently and in those cases can sometimes be handled by special methods. It is not a common occurrence in non-scientific work.
- Limited precision for real numbers is very pervasive
- Assume that most decimal calculations will, in fact, be in error!
- Evaluate and use computer calculations with this in mind

Risks in Numerical Computing

- Almost all computer calculations involve roundoff error (limited precision error)
- If not monitored and planned for carefully, such errors can lead to unexpected and catastrophic results
- Ariane 5 Rocket Failure
- Patriot Missile Failure during Gulf War

The Explosion of the Ariane 5

- On June 4,1996 an unmanned Ariane 5 rocket launched by the European Space Agency exploded just forty seconds after its lift-off.
- The rocket was on its first voyage, after a decade of development costing $\$ 7$ billion. The destroyed rocket and its cargo were valued at $\$ 500$ million.
- It turned out that the cause of the failure was a software error in the inertial reference system. Specifically a 64 bit floating point number relating to the horizontal velocity of the rocket with respect to the platform was converted to a 16 bit signed integer. The number was larger than 32,767, the largest integer storeable in a 16 bit signed integer, and thus the conversion failed.
- Back

Patriot Missile Failure during Gulf War

During the Gulf War, an American Patriot Missile battery in Saudi Arabia, failed to track and intercept an incoming Iraqi Scud missile. The Scud struck an American Army barracks, killing 28 soldiers and injuring around 100 other people. The General Accounting office reported on the cause of the failure. It turns out that the cause was an inaccurate calculation due to computer arithmetic errors.
The time in tenths of second as measured by the system's internal clock was multiplied by $1 / 10$ to produce the time in seconds.
The value $1 / 10$, which has a non-terminating binary expansion, was chopped at 24 bits. The small chopping error, when multiplied by the large number giving the time in tenths of a second, led to a significant error. Indeed, the Patriot battery had been up around 100 hours, and an easy calculation shows that the resulting time error due to the magnified chopping error was about 0.34 seconds. (The number $1 / 10$ equals $1 / 2^{4}+1 / 2^{5}+1 / 2^{8}+1 / 2^{9}+1 / 2^{12}+1 / 2^{13}+\ldots$.
A Scud travels at about 1,676 meters per second, and so travels more than half a kilometer in this time. This was far enough that the incoming Scud was outside the "range gate" that the Patriot tracked.

Digital Representation - Text

- Text (letters punctuation, invisible formatting characters)
- HTML (already discussed need for visual deign)

Digital Representation

+ All data is digitized into some pattern of symbols
+ Meaning of the pattern depends on how we interpret the representation
+ What does 011000010010010110101001 ... represent?
+ Could be text: a\%©
+ Could be three unsigned integers: 97, 37,169
+ Could be three signed integers: 97, 37,-77
+ Could be colors for one pixel: R:97 G:37: B169 = ■ + Could be ???

Text - One Byte per Character Suffices

English Character Set

- All uppercase and lowercase letters
- Punctuation symbols like !., ? : ;"‘ etc.
- Digits 0, ..., 9
- Arithmetic symbols $+=-/<>$
- Assorted special symbols like \# @ \$ \% ^ \& * () \{ \} [] etc.
- Invisible formatting characters

Using ASCII
Look, a tyart

\[\)| digitization requir es |
| :--- |
| 14 bites of storage |

\]

$0 \cdot 001 \cdot 00|C \cdot 1011 \cdot 1| 011 C 1111|01101011| 00101130|00100000| 01 \cdot 00001$
$00100000|61110100| 21151601|01100111| 01102131 \mid 0 \cdot 11001300 \cdot 00001$
Jlank t i g E r i

