

Technology in Action

Technology in Focus: Under the Hood

Electrical Switches

- The system unit contains the CPU
- The CPU uses a large number of switches
- Two states: 1 or 0 (on or off)
- Binary language consists of two numbers: 1 or 0
- These switches are used to process data

Transistors

- Transistors
- Electrical switches built of layers of silicon
- Early transistors were built in separate units as small metal rods
- Each rod was a small on/off switch
- Smaller and faster than vacuum tubes
- Produced less heat

Integrated Circuits

- Made of semiconductor material, silicon
- Contain huge number of transistors, resistors, capacitors, and diodes
- Small size, only $1 / 4$ inch in diameter

Microprocessors

- Chip that contains CPU
- Intel 4004
- First complete microprocessor on a single integrated circuit
- Built in 1971
- Contained 2,300 transistors
- Current CPUs contain more than 500 million transistors

Base 10 Number System

- Organized plan for representing a number
- Base 10 or decimal notation
- Uses 10 digits (0-9)
- System used to represent all of the numeric values we use each day

$\begin{gathered} 10^{3} \\ \text { 1,000s } \\ \text { place } \end{gathered}$	$\begin{gathered} 10^{2} \\ \text { 100s place } \end{gathered}$	$\begin{gathered} 10^{1} \\ \text { 10s place } \end{gathered}$	$\underset{\text { 1s place }}{10^{0}}$	$\begin{aligned} & (6,000+900+ \\ & 50+4)=6,954 \end{aligned}$
1,000	100	5*10 +	4*	

Copyright@ 2011 Pearson Education, Inc. Publishing as Prentice Hall
8

Base 2 Number System

- Base 2 or binary
- Uses two digits $(1,0)$
- Computers use binary because each switch can be in one of two positions: on or off.

ASCII

- American Standard Code for Information Interchange
- Pronounced "As-key"
- Represents each letter or character as an 8-bit (or 1-byte) binary code.

ASCII Code	Represents This Symbol	ASCII Code	Represents This Symbol
01000001	A	01100001	a
01000010	B	01100010	b
01000011	C	01100011	c
01011010	Z	00100011	\#
00100001	$!$	00100100	$\$$
00100010	$"$	00100101	$\%$

Copyrighte 2011 Pearson Education, Inc. Pubbishing as Prentice Hall

EBCDIC and Unicode

- EBCDIC
- Used by older mainframe computers
- Unicode
- Uses 16 bits (2 bytes)
- Multilanguage support
- Currently assigns more than 96,000 unique character symbols

Decimal Numbers

- Floating-point standard established by IEEE
- 32-bit (4-byte) system
- First bit (sign bit) indicates positive or negative
- Next 8 bits indicate magnitude (hundreds, millions, etc.)
- Remaining 23 bits store number

System Clock

- Moves CPU from one stage of the machine cycle to the next
- Acts as a metronome, keeping a steady beat or tick
- Ticks, known as the clock cycle, set the pace
- Pace, known as clock speed, is measured in hertz (Hz)

Stage 1: The Fetch Stage

- Data and program instructions stored in various areas of the computer
- Data moved from storage to RAM
- CPU accesses RAM and moves data into registers
- Cache memory
- Stores recent or frequently used instructions
- Faster to access than RAM

Copyight@ 2011 Pearson Education, Inc. Publishing as Prentice Hall

Control Unit

- Manages switches inside the CPU
- Remembers
- Sequence of processing stages
- How switches are set for each stage
- Uses beat of system clock to move switch to correct on or off setting for each stage
- All CPUs must perform a series of similar steps:
- Fetch
- Decode
- Execute
- Store

CPU Machine Cycle

Stage 2: The Decode Stage

- The CPU's control unit decodes a program's instructions into commands
- Instruction set
- The collection of commands a CPU can interpret
- Written in assembly language for programmers.
- Assembly language is translated into machine language for the CPU

Copyright@ 2011 Pearson Education, Inc. Publishing as Prentice Hall 19

Stage 4: The Store Stage

- Results produced by the ALU in Stage 3 are stored in the registers

Pipelining

- Boosts CPU performance
- CPU works on more than one stage or instruction at a time

Copyight© 2011 Pearson Education, inc. Publishing as Prentice Hall

Stage 3: The Execute Stage

- Arithmetic logic unit (ALU) performs
- Mathematical operations
- Addition
- Subtraction
- Multiplication
- Division
- Test comparisons (<, >, =)
- Logical OR, AND, and NOT operations

Moore's Law

- The number of transistors on a processor doubles every 18 months
- The first 8086 chip had 29,000 transistors and ran at 5 MHz
- Today's Penryn chip for notebook computers has 820 million transistors and runs at 2.6 GHz

Multiple Processing

- Multiple processors or computers work on a problem simultaneously
- Dual- or multicore: Multiple processors in one computer
- Parallel processing: Multiple computers working on one problem
- Problem must be able to be divided into a set of independent tasks

DNA Computers

- Use DNA molecules and special enzymes instead of silicon chips
- 330 trillion operations per second
- 100,000 times faster than current silicon-based computers
- No practical applications yet

