General Ecology Introduction to R

Introduction to R
,2 , Part I
We are going to learn some of the basics for R, a language for statistical computing and graphics. It is available for free from http://www.r-project.org/. Hopefully you have already downloaded it and installed it on your computer. Today we will practice some basic data manipulation However, R has a huge number of different capabilities; and we will only be able to cover a few of them in class. I would strongly encourage all of you to go over the Intro to R documentation found at the R project web site

(http://cran.r-project.org/doc/manuals/R-intro.html, see also

http://cran.r-project.org/doc/contrib/Short-refcard.pdf).

.

Numerical Vectors
The most basic type of data structure in R is a vector. Vectors are a series of elements of a single data type – numbers, characters, logical statements, etc. - contained in one named object. We are going to start by creating and manipulating vectors of numbers.

The first thing we want to do is use the c(concatenate) function to create a short numerical vector. The c function combines multiple elements into a single vector in the order in which they appear. For example type:

Monkeys = c(1,20,9)
This will create a vector named Monkeys containing these three numbers. Commands that do not include an assignment will print the output of the command to the screen. (Sometimes you will see "<-" rather than "=", but they are equivalent for assigning values to objects.) For example, to see the vector that you just created type “Monkeys” and hit enter. Make sure you don’t use all lower case this time, “monkeys”; R is case sensitive. Typing “c(8,5,74)” without assigning it to a variable will print that set of elements to the screen.

There are several ways to create vectors of regular sequences. The rep function creates a vector by repeating a given value a given number of times. Type:

are = rep(2,6)
This creates a vector named are with the number 2 repeated 6 times. Type “are” to see what this vector looks like. You can also use rep to repeat more complex command structures, such as other vectors. Type:

lotsa = rep(Monkeys,3)

Look at the vector you created by typing “lotsa”. The Monkeys vector has been repeated three times.

Colons are extremely useful as they produce a vector of consecutive integers over some range that you define. Type:

fun = 3:7
That should have made a vector containing all the integers from 3 to 7.

Finally you can use the c command to combine vectors and numbers into a single vector. Let’s replace the Monkeys vector with a new vector containing all of our vectors and the number 34.

Monkeys = c(Monkeys,are,lotsa,fun,34)
Does that look right? Cool.

To find out how many elements your vector has type:

length(Monkeys)
Vector Indexing
Often you do not want to return an entire vector but instead only a few elements of a vector. In that case you must type the name of the vector followed by the index of the appropriate elements surrounded by brackets. For example type;

Monkeys[4]
This will return the fourth element of the vector Monkeys. It is also possible to return not just a single element of the vector but several elements by using a vector of integers referring to the index of the various elements. For example:

Monkeys[c(7,10,14,21)]
Will return the 7th, 10th, 14th and 21st elements of vector Monkeys.

For this type of indexing it is often very useful to use vectors created using the colon.

CertainMonkeys = Monkeys[5:17]
Will create a vector than containing the 5th to the 17th elements of vector Monkeys.

An alternative way to index is to use a logical vector as the index. The logical vector should be the same length as the vector being indexed. However, instead of containing numeric values this index contains logical values, in other words TRUE or FALSE based on some condition. If this logical vector is used as an index then R will return only the elements for which the logical vector is TRUE.

Let's assume the values in Monkeys are body masses for different species of monkey. Now let’s create a logical vector. Type:
ItsASmallMonkey = Monkeys<5
This will create a logical vector, ItsASmallMonkey, the same length as Monkeys, which contains a TRUE if that element of Monkeys is less than 5 and a FALSE otherwise. Type “ItsASmallMonkey” to view this vector. The logical operators that R recognizes are <, <=, >, >=, == for exact equality and != for inequality. You can also use & (for “and”) and | (for “or”) to create more complex conditions.

Now let’s use that vector to index Monkeys. Type:

Monkeys[ItsASmallMonkey]
This will return a vector containing only the values of Monkeys that are less than 5. You could bypass the creation of ItsASmallMonkey by just typing:

Monkeys[Monkeys<5]
One last thing I want to point out about indexing is that it can be used not just to return certain elements of a vector, but also to modify only certain elements. For example type:

Monkeys[Monkeys<5] = 10
Now type “Monkeys” to see what you’ve created. You have identified all the elements of Monkeys that are less than 5 and changed them to 10.

Vector Arithmetic
Now let’s use these vectors to do some math. There are two basic principles for doing vector arithmetic. You can either use an equation containing a vector and a constant, or you can use an equation containing two vectors of the same length.

If you use a vector and a constant then you will apply that equation to every element of the vector. For example type:

foo = Monkeys^2
foo will be a vector that has all the elements of Monkeys squared. Similarly Monkeys+3 would return a vector with all the elements of Monkeys having 3 added to them, etc.

There are some functions in R which take a single number as their argument and return a single number. For example log returns the natural logarithm of a number and exp returns e raised to the argument. If a vector is used as the argument for one of these functions, then the function will work just like the above example, such that the function will be applied to each element of the vector separately. To see how this works type:

log(Monkeys)
If two vectors of the same length are included in an equation, then the equation will be applied element by element to both vectors. That means the equation x = y+z, indicates that x[1]=y[1]+z[1], x[2]=y[2]+z[2], x[3]=y[3]+z[3], etc. To see how this works type:

hope = foo+Monkeys
Finally, you can create an equation combining multiple vectors, constants and functions, such as:

3/Monkeys+foo^(log(hope)+1)
Keep in mind the order of operations whenever using a complex equation. You can always use parentheses, if you aren’t confident that you have it right.

It is often useful to create a vector of evenly ordered numbers that are separated by more than 1. In this case it is a good idea to use the colon, but keep in mind that the first operation is to create the vector defined by the colon, and then to apply the other operations to that vector. Thus:

1:3*5+2
will return the vector c(7,12,17), not 1:17. To return that second vector you should use:

1:(3*5+2)
Arrays
An array is a more complex data structure than a vector, in that it contains multiple dimensions of elements. In other words a vector is a one dimensional array. While a vector is just a list of values, in an array those values are arranged into rows and columns, or possibly into even more dimensions. The function dim returns a vector in which the elements are the size of each dimension of the array. Similarly the dim function can be used to transform the dimensions of an array or vector. Let’s turn Monkeys into a 6 by 4 array. To do this type

dim(Monkeys) = c(6,4)

Did that work? The product of the dimensions must equal the number of elements in the object. If you got an error, then you probably didn’t follow all my instructions before. To correct this type length(Monkeys). If Monkeys does not have 24 elements, add or subtract elements, so that it does.

Type Monkeys to see what it looks like. As you can see the values of Monkeys have been rearranged into an array with 6 rows and 4 columns (rows always appear before columns when assigning dimensions). In order to make this transformation R fills in the first column using the first 6 elements, the second using the next six, etc.

Array Indexing
Array indexing works very much like vector indexing, except that commas are now used to separate the indexes for the different dimensions of the array. The first number refers to the row, the second number refers to the column and any subsequent numbers refer to the higher order dimensions. For example type:

Monkeys[5,2]
This should return the element in the 5th row and the the 2nd column. Just like for vector indexing, a vector can be used to refer to multiple elements. Type:

Monkeys[2:5,c(2,4)]
Typing this command will return all the elements from rows 2 through 5 in columns 2 and 4. Furthermore leaving one of the dimensions blank will refer to every element in that dimension. Type:

Monkeys[,2]
This command will return all the elements in column 2, no matter what row they are found in.

A logical array can also be used just like a logical vector to index an array of the same dimensions. However, this command will return a vector, not an array, as there is no guarantee that the output will have the same number of elements as the original array.

Dataframes

One of the powerful aspects of R is its ability to handle many different types of data. For example, we might have one vector of species names like this:

species = c('capuchin','howler','colobus','spider','gibbon','vervet','macaque')

These data are of the type 'character', as can be seen by typing class(species). In contrast, the data in Monkeys are 'numeric', as can be seen by typing class(Monkeys). But these two types of data can be combined in a single unit called a dataframe. Type:

data.frame(species , Monkeys[1:7])

You can see we get a table with column headings "species" and "V2" (for variable 2). I specified only the first seven elements of Monkeys since there are only seven elements in species. Clearly this is an artificial way to create a dataset. We can provide a more useful second column heading and assign it all to an object called monkeys.df by typing:

monkeys.df = data.frame(species, mass = Monkeys[1:7])

Now let's say we also have data on lifespan for these species.

lifespan = c(15,3,9,12,26,6,12)

This can be combined with our existing dataframe by typing:

monkeys.df = cbind(monkeys.df, lifespan)
Here, the command cbind tacks on (or "binds") columns together in the order that they are specified. There is a similar function for binding together rows called rbind.

So, now we have a nice fake dataset. Type monkeys.df to have a look. Each column has a column name, and unlike in arrays the columns do not necessarily have to be all of the same data type. We can refer to any one column within a dataframe by using the $ between the dataframe name and the column name like so:

monkeys.df$mass

monkeys.df$lifespan
Plotting

R is a powerful tool for creating graphs and images, but the variety of commands can be somewhat daunting. Let's just start with some basics. Type:

?plot

to get the help page for the plotting command. You can see that at the very least, the plot command expects you to give it x and y variables to plot, and that there are a whole host of other possible arguments for refining the plot.

plot(monkeys.df$mass, monkeys.df$lifespan)

We could add custom axis labels, a title, and change the color by specifying a few more arguments:

plot(monkeys.df$mass, monkeys.df$lifespan, xlab="Mass (kg)", ylab = "Lifespan
(yrs)", main = "Lifespan versus Body Mass", col = "red")

For a more complete list of possible parameters that could help modify a basic plot, type "?par".

R
Programming for Statistical Analysis and Graphics, Part II
Introductory R Lab

1. Objectives

a. Learn basics of data entry

b. Learn simple data manipulation

c. Learn simple statistical tests

i. Independent Samples t-test

ii. Pearson’s Correlation

iii. Chi-square goodness of fit
iv. Chi-square test of independence

2. Data Entry and Creating Data
a. Creating Vectors
i. Entering Data

1. By hand

a. x = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

i. x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

2. importing a datasheet

a. read.table(C:\file.csv) or read.table(C:\file.txt)

b. yourdata = read.csv(‘C:\My Documents\file.txt’, header=T, sep=”,”)

ii. Creating Data

1. Creating a sequence

a. x = (1:10)

i. x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

2. Creating random numbers

a. runif(n) = n random numbers from a uniform distribution

b. rnorm(n, mean=c, sd=x) = n random numbers from a normal distribution with a mean of c and a standard deviation (sd) of x.

3. Making new from old

a. Mathematical Functions performed on entire objects (here vectors)
i. log(x) = log base e of x; y = log(x)
ii. exp(x) = antilog of x (ex); y = exp(x)
iii. log(x,n) = log base n of x; y = log(x,n)
iv. log10(x) =log base 10 of x; y = log10(x)
v. sqrt(x) = square root of x; y = sqrt(x)
iii. Missing data values

1. rm.na=T

3. Simple data manipulation

a. Summary statistics/Vector Functions
i. min(x)

ii. max(x)

iii. range(x)

iv. median(x)

v. mean(x)
1. Removing missing data
a. Find missing data values

i. which(is.na(x))

b. Replace missing data values with zero

i. Y = ifelse(is.na(x),0,x)

c. Remove missing data value to perform function

d. mean(x, na.rm=T)

vi. var(x) = variance of x
vii. sd(x) = standard deviation of x
viii. sum(x)
ix. length(x) = the number of values in the object x (here the object is a vector)
4. Simple Statistical Tests

a. Independent samples t-test

i. Example
1. Create a practice data frame

x = (1:10)
y = (6:15)
data=data.frame(x,y)

data

data2=stack(data)

data2

mass = data2[,1]

species = data2[,2]

data3=data.frame(mass, species)

data3

2. Perform a t-test

#t.test(formula = dependent variable ~ independent variable)

t.test(formula = mass~species)
rm(list=ls())

*Clear R: >rm(list=ls())

b. Correlation

i. Example

1. Create a practice data frame

frogs = c(8, 6, 7, 5, 3, 10, 9)

tadpoles = c(1.87, 1.5, 1.7, 1.25, 0.4, 2.14, 2.01)

frogs

tadpoles

cor.test(frogs,tadpoles)

rm(list=ls())

c. Chi-square Goodness of Fit

i. Example

count<-c(152, 39, 53, 6)

type<-gl(4,1,4, labels=c("YellowSmooth", "YellowWrinkled", "GreenSmooth", "GreenWrinkled"))

##*’gl’ is the command to generate levels. It takes the form: gl(number of ##levels, repeats, total length, labels =”x”, “y”, “etc”)

##Create a data frame

seeds<-data.frame(type, count)

seeds

##Create a table that puts the data in a form that is appropriate for a Chi-square

seeds.xtab <- xtabs(count~type, seeds)

##View the table

seeds.xtab

##Check that no expected values are less than 5

chisq.test(seeds.xtab, p = c(9/16, 3/16, 3/16, 1/16), correct = F)$exp

##No expected values are less than 5; proceed with Chi-squared Goodness of Fit Test

chisq.test(seeds.xtab, p = c(9/16, 3/16, 3/16, 1/16), correct = F)

##What does your p<0.05 mean? It means that you reject the null hypothesis that your

##data came from a population with a ratio of 9:3:3:1

rm(list=ls())
d. Chi-square Test of Independence

i. Example

birds<-c(11, 4, 5, 12)

birds

location=gl(2, 2, 4, labels=c("Tree", "Ground"))

##The above line could also read:

##location = c(“Tree”, “Tree”, “Ground”, “Ground”)

location

sex=c("Males", "Females", "Males", "Females")

sex

twoway<-data.frame(birds, location, sex)

twoway

twoway2<-tapply(birds, list(sex, location), sum)

twoway2

##check that there are no expected values less than 5

chisq.test(twoway2, corr=F)$exp

##perform the Chi-square test

chisq.test(twoway2, corr=F)

rm(list=ls())
� Adapted from lab by NM Hallinan, UC Berkeley, http://ib.berkeley.edu/courses/ib200b/Labs/4 Intro to R/Introduction to R Lab.pdf

	
	Page 1
	

	
	
	

	
	Page 2
	

	
	
	

