General Ecology
Lab 3

R Packages and Graphics

Starters

Setting your working directory

>setwd(‘C:/Documents and settings/My Documents’)

This will tell R where to look for files and were to send output (like the graphs you make).
THE SLASHES IN AN R FILE PATH ARE OPPOSITE FROM THE DIRECTION OF SLASHES IN MANY/MOST OPERATING SYSTEMS
Packages

What is an R package?
“The functionality of core R system is extended through an ever expanding library of add-on packages. As new procedures are developed, they can be supported by specific add-on packages rather than necessitating re-writes of the entire application. Packages define a set of functions designed to perform more specific statistical or graphical tasks. Packages also include help files, example data sets and command scripts to provide information about the full use of the functions” - Murry Logan, 'Biostatistical Design and Analysis Using R: A Practical Guide'

Notation Example:

>?plot

[image: image1.png]R: Generic X-Y Plotting - Windows Intennet Explorer,

GQ) ~ [Rrpi127.00.1:19925 breryjgraphics hpit el

B

+3 X9 723 Faircroft Road Albuguerque M

Fle Edt View Favortes Took Help

e ravortes | 5 &) il] Margospplostsd. €8 susuesed sics + [Free Hotmal &) e e Golery - DR -

237t | 8 Cortcn.. (D Puman . | 8 rave W P Perysco. | ooy .. | 8@ Wokome. [P S in - | R Box Pl | GRS X |

@ M B L @ - Pages safety- Toose @

plot {graphics}

Generic X-Y Plotting

Description

Usage
plot(x, ¥, -..)

Arguments

the coordinates of points in the plot. Alternatively, a single plotting structure, function or any R object with a plot method

can be provided.

the y coordinates of points in the plot, optional if = is an appropriate structure.

R Documentation

Generic function for plotting of R objects. For more details about the graphical parameter arguments, see par.

- Arguments to be passed to methods, such as graphical parameters (see par). Many methods will accept the following

»

Dane.

@ et

15

Search Deskiop

The {graphics} after ‘plot’ tells you that the plot function is in the ‘graphics’ package

How do I know what R packages I already have?

>installed.packages()

How do I install an R package?
1. The easiest way to install a package is to choose ‘install package(s)’ from the drop down menu provided by clicking on the ‘Packages’ button at the top of the RGUI.
2. You will next be asked to choose a CRAN mirror. CRAN stands for ‘Collaborative R Archive Network’. A ‘mirror’ is just a server that can send you the package you are requesting. Choose the mirror site that is closest to you. At Furman we typically choose the mirror in North Carolina.

3. You will now see a long list of available packages. Choose and install ‘ggplot2’

How do I load all the cool stuff from a package?

To be able to use the functions that came in the package you must type:

>library(ggplot2)

Now, you can use the super cool functions in the ggplot2 package that will make you look like a rockstar.
Graphics

Graphics functions in R come in three types:

High level functions
High level functions generate new graphics, like a boxlot, scatterplot, bar graph, or pie graph. They come with lots of default features (font, axis size, data symbols, etc) which you can change with low level functions.

Low level functions
Low level functions allow you to customize and enhance your existing plot by adding more objects and information, such as text, titles, points, lines, custom axes, colors, etc, etc, etc.

Interactive functions
Interactive functions allow information to be added or subtracted interactively from existing plots using the mouse. For example, a label may be added to a plot at the location of the mouse pointer, thereby simplifying the interaction with the graphs coordinate system.

Parameters

High Level Graphics Functions

Below is a short example list of High Level Graphics Functions. We’ll look at just ‘plot’ in

a few examples.

plot()

‘plot’ can make several different kinds of graphs based on the way the arguments are listed and based on the type of data represented.

Start with some data to plot:
>clover<-rnorm(10, 25, 3)

>corn<-rnorm(10, 35, 5)

>data = data.frame(clover, corn)

>data

>data2=stack(data)

>data2

>gC = data2[,1]

>species=data2[,2]

>data3=data.frame(gC, species)

>data3

>photoresp<-1/data3$gC

>data3<-data.frame(cbind(data3, photoresp))

>data3

In this data frame ‘species’ is a factor vector (two levels ‘corn’ and ‘clover’) whereas ‘gC’ (grams of Carbon assimilated) and ‘photoresp’ (amino acid produced by photorespiration) are numerical vectors.

Now let’s look at the output of some plot functions

#The syntax below produces a Time Series plot. In other words values of gC are plotted in sequence as they appear in the vector if gC is a numeric vector.

>plot(data3$gC)

[image: image2.png]oC

40

35

30

25

10

Index

15

20

#The SAME syntax (see below) produces a Bar Graph if the argument is a factor vector. The height of the bars will be equal to the number of records for each factor in the data frame. Below we have 10 data points for clover and 10 for corn.

>plot(data3$species)

[image: image3.png]10

clover

com

#The syntax below produces a Strip Chart if gC is a numeric vector.

>plot(~data3$gC)

[image: image4.png]oooo

oooo

oDoo o o om

m

25

30

35

40

#The syntax below produces a Scatterplot if both photoresp and gC are numeric vectors.

>plot(data3$photoresp, data3$gC)

[image: image5.png]data3$gC

40

35

30

25

°

0025

T
0030

T
0035

data3$photoresp

0040

0045

#The SAME syntax (see below) produces a boxplot if the first vector listed is a factor vector.

>plot(data3$species, data3$gC)

[image: image6.emf]clover corn

25

30

35

40

hist()

We’ll do two more examples, first, a histogram:

#The syntax below will produce a histogram of a numeric vector. This is often a #good way to visualize your data and see if it looks normally distributed.

>hist(data3$gC)

[image: image7.png]Frequency

Histogram of data3$gC

20

25

30 35
data3$aC

40

45

boxplot()

Finally, a boxplot:

>boxplot(data3$gC ~ data3$species)

[image: image8.png]oF

G€

0

74

com

clover

Low Level Graphics Functions

Low Level Graphics Functions allow you to refine the look of your graph.

Here are a few useful functions:

Adding Points

>points(x, y, pch=a number)
(‘pch’ means ‘plotting character’. There are over a hundred in R and they are indicated by a number.

Adding Text to a Plot

>text(x coordinate, y coordinate, “The text you want here”)

This will place whatever you write inside the double quotation marks on the

graph at the x and y axis coordinates you specified. You can further refine exactly where the text is place with the ‘pos’ command.

pos=1 means text just below the coordinates and centered

pos=2 means text to the left of the coordinates

pos=3 means text directly above the coordinates and centered

pos=4 means to the right of the coordinates.

The syntax would be:

>text(x coordinate, y coordinate, “Snappy text”, pos=1)

Like this:

>boxplot(data3$gC~data3$species)

>text(1, 40, "Snappy Text", pos=1)
[image: image9.png]Snappy Text

St oF

G€

0

74

0z

com

clover

*Note that the x coordinate is a number 1, referring to the first category on the x axis and not “clover”
Adding a Line
>abline()

-Lines anywhere you want them:

>abline(intercept, slope)

>abline(h=3)

>abline(v=2)

These last two commands will draw either a horizontal line (h) or a vertical line (v) on your graph at the designated point on the y or x axis, respectively (3 on the y or 2 on the x in the example)

>plot(data3$photoresp, data3$gC)

>abline(35,0)

>abline(h=30)

>abline(v=0.035)

[image: image10.png]data3$gC

40

35

30

25

0025

T
0030

0035

data3$photoresp

0040

0045

-Line of best fit (regression line or least squares line)

<abline(lm(independent~dependent))
> abline(lm(data3$gC~data3$photoresp))
[image: image11.png]data3$gC

40

35

30

25

T
0025

T
0030

T
0035

data3$photoresp

T
0040

T
0045

Parameters
Graphic parameters give you tremendous control over the design of your graphics. To see a full list of the default graphic parameters on your system type:

>par()

We will just cover a few of these:

type() with the plot function as in p for “points”, l for “lines” , b for points over lines, and o for lines over points

> plot(data3$gC, type="p")
 [image: image12.png]0%

T T T
St oF G€

obgeeiEp

0

20

15

10

Index

>plot(data3$gC, type="l")

 [image: image13.png]0%

T
St

T
oF

T
G€

obgeerep

T
0

T
74

0z

20

15

10

Index

>plot(data3$gC, type="b")

 [image: image14.png]\
/
o
/O
R
=
i
/O
e
o o W e o &

obgeerep

20

15

10

Index

>plot(data3$gC, type="o")

[image: image15.png]0%

T
St

T
oF

T
G€

obgeerep

T
0

T
74

0z

20

15

10

Index

Axes Labels

xlab=”cool x axis name”, ylab=”cool y axis name”

> plot(data3$gC, type="b", xlab="Anything you want here", ylab="Anything at all")

[image: image16.png]Anything at all

50

45

40

35

30

25

20

Anything you want here

20

Colors

col=”your favorite color here”

Colors can be referenced by either names or number codes.

>plot(data3$gC, type="b", col="blue")

> plot(data3$species, data3$gC, col=c(3,4))

Graphics for t test

Boxplots

##create some data and run a t test

>x = (1:10)

>y = (6:15)

>data=data.frame(x,y)

>data

>data2=stack(data)

>data2

>mass = data2[,1]

>species = data2[,2]

>data3=data.frame(mass, species)

>data3

>#t.test(formula = dependent variable ~ independent variable)

>t.test(formula = mass~species)

>##now make an appropriate graph to communicate this data analysis

>boxplot(mass~species, col=c("3","4"), xlab="Species", ylab="Mass", main="Box +plot of Rockstars")

Graphics for correlation

##create some data and perform a correlation

>frogs = c(8, 6, 7, 5, 3, 10, 9)

>tadpoles = c(1.87, 1.5, 1.7, 1.25, 0.4, 2.14, 2.01)

>frogs

>tadpoles

>cor.test(frogs,tadpoles)

> plot(frogs~tadpoles, col="green", xlab="Tadpoles I Have Known", +ylab="Those Tadpoles all Grown Up", main="The Amazing +Correlation Collection #1", pch=19)

>abline(lm(frogs~tadpoles))

Graphics for Chi-square Goodness of Fit and Test of Independence

Barplot

>birds<-c(11, 4, 5, 12)

>birds

>location=gl(2, 2, 4, labels=c("Tree", "Ground"))

>##The above line could also read:

>##location = c(“Tree”, “Tree”, “Ground”, “Ground”)

>ocation

>sex=c("Males", "Females", "Males", "Females")

>sex

>twoway<-data.frame(birds, location, sex)

>twoway

>twoway2<-tapply(birds, list(sex, location), sum)

>twoway2

>##check that there are no expected values less than 5

>twoway3<-chisq.test(twoway2, corr=F)$exp

>twoway3

>##perform the Chi-square test

>chisq.test(twoway2, corr=F)

>##making a side by side bar plot

>barplot(twoway2, col=c("red", "blue"), beside=T)

>##making a legend for the bar plot

>legend(5, 10, legend=c("females","males"), fill=c("red", "blue"),box.lty=1)

Most of the material in this lab comes from Murry Logan, 'Biostatistical Design and Analysis Using R: A Practical Guide'. I strongly recommend this book as a guide to using R.
Watch out for that “+”

