Learning Objectives

- Explain and contrast four types of system maintenance.
- Describe several factors that influence the cost of maintaining an information system and apply these factors to the design of maintainable systems.
- Describe maintenance management issues, including alternative organizational structures, quality measurement, processes for handling change requests, and configuration management.
- Explain the role of CASE tools in maintaining information systems.
The Process of Maintaining Information Systems

- Process of returning to the beginning of the SDLC and repeating development steps focusing on system change until the change is implemented.
- Maintenance is the longest phase in the SDLC.
The Process of Maintaining Information Systems (Cont.)

- Four major activities:
 - Obtaining maintenance requests
 - Transforming requests into changes
 - Designing changes
 - Implementing changes

FIGURE 14-2
System Service Request for purchasing fulfillment system (Pine Valley Furniture)
Deliverables and Outcome

- The maintenance phase of the SDLC is basically a subset of the activities of the entire development process.

Deliverables and Outcome (Cont.)

- The deliverables and outcomes from the process are the development of a new version of the software and new versions of all design documents created or modified during the maintenance effort.
Deliverables and Outcome (Cont.)

FIGURE 14-3
Maintenance activities parallel those of the SDLC

Types of System Maintenance

- **Maintenance**: changes made to a system to fix or enhance its functionality
Types of System Maintenance (Cont.)

- **Corrective maintenance**: changes made to a system to repair flaws in its design, coding, or implementation

- **Adaptive maintenance**: changes made to a system to evolve its functionality to changing business needs or technologies
Perfective maintenance: changes made to a system to add new features or to improve performance

Preventive maintenance: changes made to a system to avoid possible future problems
The Cost of Maintenance

- Many organizations allocate 60-80% of information systems budget to maintenance.
- **Maintainability**: the ease with which software can be understood, corrected, adapted, and enhanced.

FIGURE 14-5
New development versus maintenance as a percentage of the software budget over the years

(Source: Based on Pressman, 2005.)
The Cost of Maintenance (Cont.)

- Factors that influence system maintainability:
 - Latent defects
 - Number of customers for a given system
 - Quality of system documentation
 - Maintenance personnel
 - Tools
 - Well-structured programs

FIGURE 14-6
Quality documentation eases Maintenance

Managing Maintenance Personnel

- Number of people working in maintenance has surpassed number working in development.
- Maintenance work is often viewed negatively by IS personnel.

Managing Maintenance Personnel (Cont.)

- Organizations often rotate personnel in and out of maintenance roles in order to lessen negative feelings about maintenance.
- Organizations have historically have rewarded people involved in new development better than maintenance personnel.
Managing Maintenance Personnel (Cont.)

- Three possible organizational structures:
 - *Separate* — maintenance group consists of different personnel than development group
 - *Combined* — developers also maintain systems
 - *Functional* — maintenance personnel work within the functional business unit

<table>
<thead>
<tr>
<th>Maintenance Organization Type</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separate</td>
<td>Improved system and documentation quality</td>
<td>Ignorance of critical undocumented information</td>
</tr>
<tr>
<td>Combined</td>
<td>Maintenance group knows all about system</td>
<td>Less emphasis on good documentation</td>
</tr>
<tr>
<td>Functional</td>
<td>Personnel have vested interest</td>
<td>Limited job mobility and human or technical resources</td>
</tr>
</tbody>
</table>
Measuring Maintenance Effectiveness

- Must measure the following factors:
 - Number of failures
 - Time between each failure
 - Type of failure

Mean time between failures (MTBF): a measurement of error occurrences that can be tracked over time to indicate the quality of a system.

Chapter 14

23

24
Measuring Maintenance Effectiveness (Cont.)

FIGURE 14-7
How the mean time between failures should change over time

Controlling Maintenance Requests

- Maintenance requests can be frequent.
- Prioritize based on type and urgency of request.
- Evaluations are based on feasibility analysis.
Controlling Maintenance Requests (Cont.)

FIGURE 14-8
How to prioritize maintenance requests

Controlling Maintenance Requests (Cont.)

FIGURE 14-9
How a maintenance request moves through an organization
Configuration Management

- **Configuration management**: the process of ensuring that only authorized changes are made to the system

Configuration Management (Cont.)

- **Baseline modules**: software modules that have been tested, documented, and approved to be included in the most recently created version of a system
Configuration Management

- **System librarian**: a person responsible for controlling the checking out and checking in of baseline modules when a system is being developed or maintained.

- **Build routines**: guidelines that list the instructions to construct an executable system from the baseline source code.

Role of CASE and Automated Development Tools in Maintenance

- **Traditional systems development**
 - Emphasis is on coding and testing.
 - Changes are implemented by coding and testing first.
 - Documentation is done after maintenance is performed.
 - Keeping documentation current is often neglected due to time-consuming nature of task.
Role of CASE and Automated Development Tools in Maintenance (Cont.)

- Development with CASE
 - Emphasis is on design documents.
 - Changes are implemented in design documents.
 - Code is regenerated using code generators.
 - Documentation is updated during maintenance.

Reverse engineering: automated tools that read program source code as input and create graphical and textual representations of design-level information such as program control structures, data structures, logical flow, and data flow.
Role of CASE and Automated Development Tools in Maintenance (Cont.)

- **Reengineering**: automated tools that read program source code as input; perform an analysis of the program’s data and logic; and then automatically, or interactively with a systems analyst, alter an existing system in an effort to improve its quality or performance.

Figure 14-10 Visual Studio .NET engineer applications into Visio UML diagrams
Website Maintenance

Special considerations:

- 24 X 7 X 365
 - Nature of continuous availability makes maintenance challenging.
 - Pages under maintenance can be locked.
 - Consider using date and time stamps to indicate when changes are made instead.

Website Maintenance (Cont.)

- Check for broken links
- HTML Validation
 - Pages should be processed by a code validation routine before publication.
- Reregistration
 - When content significantly changes, site may need to be reregistered with search engines.
Website Maintenance (Cont.)

Future Editions
- Consistency is important to users.
- Post indications of future changes to the site.
- Batch changes.

Electronic Commerce Application: Maintaining an Information System for Pine Valley Furniture’s WebStore

To maintain PVF’s WebStore, the following questions need to be addressed:
- “How much is our Web site worth?”
- “How much does it cost our company when our Web site goes down?”
- “How reliable does our Web site need to be?”
Electronic Commerce Application: Maintaining an Information System for Pine Valley Furniture’s WebStore

Pine Valley Furniture needs to immediately develop a plan for addressing the WebStore’s service level problems.

Summary

In this chapter you learned how to:

- Explain and contrast four types of system maintenance.
- Describe several facts that influence the cost of maintaining an information system and apply these factors to the design of maintainable systems.
- Describe maintenance management issues, including alternative organizational structures, quality measurement, processes for handling change requests, and configuration management.
- Explain the role of CASE tools in maintaining information systems.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America.

Copyright © 2011 Pearson Education, Inc.
Publishing as Prentice Hall