CSC105, Introduction to Computer Science
Data Representation on Computers

Numeric Representations.

As we have seen, all forms of data and instructions are encoded on computer systems as
binary strings. A binary string is a sequence of binary digits (bits) of some standardized
length. Most binary strings have lengths that are powers of two.

e byte = 8 contiguous bits
e 2 bytes =16 bits
e 4 bytes = 32 bits, etc.

Large quantities of bits have standard names too.

« Kkilobyte (KB) =210 = 1,024 bytes
 megabyte (MB) =220 = 1,048,576 bytes

o gigabyte (GB) =230 =1,073,741,824 bytes

e terabyte (TB) = 240 =1,099,511,627,776 bytes

These quantities are used to express the size of files, storage capacities, memories, etc.

A data type is a binary representation of some form of information. Number, for
example, is usually represented on computer systems by way of several different data
types. Keep in mind that we are talking about coding schemes. Obviously, there are not
really different kinds of numbers. But, there are different representations of numbers.

e unsigned integers [8, 16 bits, possibly larger]

e signed integers (twos complement) [32 or 64 bits]

e floating point numbers (real numbers) [32 or 64 bits]
e other specialized forms, e.g., BCD [variable length]

Signed integers are usually encoded using twos complement. This scheme has these
advantages.

e the most significant bit can be interpreted as the sign bit
0 = positive
1 = negative

e arithmetic is easier: e.g., subtraction can be calculated by adding the first value to
the complement of the second value.

Floating Point

In the lab, you worked with examples of both unsigned and signed integers. Floating
point is very different. It is used to represent real numbers. The encoding scheme models
scientific notation. We use scientific notation to capture the scale and significance of
numbers in a more concise form. For example, using standard notation, large and small
values are often represented with leading or trailing zeros. These zeros add no significance
to the number—but indicate whether the number is large or small (scale). Scientific
notation makes for a more compact notation.

-1-

m(o
X «— (O

6.5x10’ 0.87x10°

Single Precision
S exp mantissa
| [
—Tk—l e 23 -
[+ 32 bits >
s exp mantissa
d [
—»F}- 11 >« 52 >
[« 64 bits >
Double Precision

Floating point numbers encode and store three separate pieces of information.
e abitrepresenting the sign of the value (0 = positive; 1 = negative).
e several bits denoting the exponent value (i.e., power of 2).

e the significant digits in the form of binary fraction in which the binary point is
understood as left of the first binary digit (0.1dddddddd, where d = binary digit).

Because number codes are finite and numbers are not, computers can commit errors
when they try to express values that are

e too big for the precision. (overflow)
e too small for the precision. (underflow)

The number of bits used for a data code tells us the possible range of values that the
data type can express. For examples,

e one byte = 28 = 256 possible values (0...255 in binary)
e 32 bits = 232=4,294,967,296 possible values (0...4294967295 in binary)

Thus, when designing a code, one must determine how many meaningful values will need
to be represented. Naturally, as precisions getter larger, it costs more to store and transmit
that data. (Consider also that it is usually collections of these values and not just single
values.)

e a 12 megapixel camera captures images at a resolution of 4256 x 2832 pixels. When
viewing these images, each color pixel may be expanded to 36 or 42 bits. Thus, the
size of the image

433,907,712 bits (54,238,464 bytes or 51 MB)
506,225,664 bits (63,278,208 bytes or ~ 60 MB)

(Images are seldom stored at these sizes. They are usually compressed for storage and
decompressed for viewing, printing, etc.)

Since binary codes can be lengthy, it is convenient to represent them in more concise
formats. Two popular notations are

e octal (base-8)

e hexadecimal (base-16)
The advantage of using these bases is that they permit easy conversions to and from binary.

Each octal digit represents 3 consecutive binary digits or bits.
000 = 0
001 =
010 =
011 =
100 =
101 =
110 =
111 = 7

Ul WN =

9. Each hex digit represents 4 consecutive binary digits or bits.

0000 =
0001 =
0010 =
0011 =
0100 =
0101 =
0110 =
0111 =
1000 =
1001 =
1010 =
1011 =
1100 =
1101 =
1110 =
1111 =

Mo O W > OO0 Ul & WNROS

e

1 As we will see, character code schemes are often displayed in hexadecimal notation for
greater readability.

-3-

Translating from hex to decimal is not difficult. Here is an example.
U+03B1 (Greek letter alpha) = 0000 0011 1011 0001 in binary =
204284+ 27425424+ 20=512+ 256+ 128+ 32+ 16 +1=945.

Representing Text

Numbers are interesting, but our focus in this course will be using computational
thinking to solve problems that mostly involve text or the written word.

Most conventional systems for representing text have used separate symbols called
character sets. (Think of older printing technologies where the typesetter created the
printed page by building lines of text using individual letters, etc.) On computer systems,
text has been represented as character codes. In other words, each symbol of text has a
binary value assigned to it. Character codes typically have the following characteristics.

e thereis a one-to-one encoding of the text symbol set, i.e., each symbol has a unique
code.

e there is a uniform number of bits assigned to represent each character, i.e., uniform
precision.

e the order of values assigned models the lexical order of the symbols, i.e., enforces
the collating sequence.

We can think of text as strings of character codes. For example,

Tlhle]l®]lc|lalt|B]i|s|®]|]o]ln|®]t|h|]e|BIm]a]lt

Each character is represented by a uniform number of binary digits or bits. The string,
however, is a variable number of units. So, we must somehow signify where the string ends.
Thus, character codes typically have special or invisible characters that perform this and
related functions.

What we need here is an end-of-string indicator. Most character codes usually have
such an invisible character code—although operating systems may specify their own
requirements.

Tlhle]®w]cla]lt|B]i|s|®B]oln|B®]|t|h]e|®]|m]a]t].]|ES

Invisible character codes also play a role in formatting text. For example, the blanks
shown above are invisible characters. Likewise, end-of-line and carriage returns must
also be encoded. Other invisible character codes include form-feeds (new page), tabs, etc.

Technically, a text string is stored in primary memory. An entire document is no more
than a single variable-length text string. Here the string is 23 units in length. Documents
can have thousands and even millions of characters. The point is that—from the
computer’s perspective—the document is one long string or serial structure. It does not
have the three-dimensional organization that we are accustomed to.

We often want to preserve text objects elsewhere for more permanent storage. To
accomplish this, the operating system stores the strings as files, that is text files.

Tlhle|®]lc|lalt|®w]il|ls|®&]ofn|B®]|]t|h|e|W&]|m|a]t].|EF

The only practical difference will be the conventional end-of-file character and some
header information stored in front.

One of the earliest computer character codes employed by most systems is ASCII code.
This stands for American Standard Code for Information Interchange.

e its origin is for data transmission over teletype machines.

e ASCII is a compact code of 8-bits or one byte per symbol (although the original was
7-bits).

e itislimited to the Roman alphabet (upper- and lower-cases), numerals,
punctuation, special symbols ($, #, @, etc.), and control characters (i.e., invisible
characters).

e ASCII preserves the collating sequence.
Lots of legacy text materials are still stored in ASCII format.

ASCII is clearly limited when treating documents that use other alphabets.
Consequently, in 1991, a consortium of U.S. IT companies and a working group from the
ISO (International Standards Organization) joined together to develop a more global coding
system for representing text.

The result is Unicode, which is the dominant code on computer systems today. The
original design requirements were these.

e backward compatible with ASCII.

e capable of representing related alphabets from European languages.
e capable of representing Middle Eastern scripts (right-to-left)

e and Asian scripts

To accommodate so many different codes, the size of a single symbol code had to be made
bigger. The original plan was to expand each symbol to a 16-bit code (two bytes).

e 216 = 65536 different values or codes.
Later, this was expanded to 32-bits (four bytes).
e 232=> 4 billion+ different code possibilities.

Here is an example of how it works for backward compatibility with ASCII.

e ASCII‘C = 0110 0011
e Unicode‘c = 0000 0000 0000 0000 0000 0000 0110 0011
in hexadecimal, 0 0 0 0 0 0 6 3

i.e.,, U+00000063.

For applications, there are several Unicode variations that permit shorter precision
codes for convenience. For example, UTF-8 is a variable-length coding scheme supported

-5.

by the Internet Engineering Task Force (IETF) for Internet applications. It is the de facto
standard for the World Wide Web and is also common for e-mail applications.

UTF is not a separate code but rather a mapping of Unicode. In particular, UTF-8
encodes each character symbol using one to four bytes (or octets). Thus, the first 128
symbols of Unicode (and ASCII) are preserved as single octets. UTF-8 has also become a
popular coding standard for both operating systems and programming languages.

Formatting Text.

Most organizations and enterprises generate large amounts of text documents that
must be stored for archival and general use. There is a problem, however, with the
compatibility of these documents.

Traditional character codes like ASCII and Unicode lack any special formatting features
for representing text. In fact, files composed of Unicode (or ASCII) symbols are called
plaintext files. Compare the two passages

The coding method used by the vast majority of computers for a number of
years is called the American Standard Code for Information Interchange or
ASCII (pronounced “"AS-key").

The coding method used by the vast majority of computers
for a number of years is called the American Standard Code
for Information Interchange or ASCII (pronounced “AS-key”).

The former exhibits

» font face (choice of symbol style).

o fontsize.

e special styling such as italics and boldface.

e other format control, such as tab position and margin control.
The bottom version is rightly dubbed plain text.

If we were to examine the former sample as a plain text file, we would see something
very different.

ég - jbib e <*
o o e v -
l ¥ ¥ ¥ ¥ ¥ ¥ ¥
% % % £ %
©
:) .
3 E E E E E E , @
® d ¥
(¥ ¥
(((¥ ¥
£ { > + ¥ ¥ ¥ ¥
E (™ (% ¥ ¥
i
=am %
“ “)) “
(
& (\J

The coding
method used by the vast majority of computers for a number of years is
called the American Standard Code for Information Interchange or ASCII
{pronounced 1AS-keyl).

Most of it is unreadable. This is because extra coding is introduced. The problem, however,
is that these codes are proprietary—and seldom compatible.

How do we solve this compatibility problem? For example, imagine that we manage
documents for a large international corporation with offices or locations around the world.

At first glance, we seem to have only two (extreme) alternatives.

i. store everything as plaintext.
strengths: compatible
weaknesses: loss of too much layout and format information.

ii. store everything using a single proprietary software application.
strengths: compatible
weaknesses: every machine must have a license.

In fact, there are a few other choices available.

Microsoft has developed its own solution by offering a common denominator format
called Rich Text Format or RTF. It offers a lot of basic format control such as fonts, sizes,
margin control, etc. But, not all features are represented. Because it is royalty-free, other
word processing applications can use it to store files.

This suggests a third possible solution.
iii. store everything as RTF.
strengths: more compatibility, less expensive than ii

weaknesses: loss of some layout and format information.

-7-

Another development is that of Adobe’s Portable Document Format or PDF. A PDF
document is actually includes a graphic representation of the “look” of the document rather
than a simple text code. Thus, PDF documents preserve the original layout and design very
accurately.

As a bonus, Adobe distributes the reader software for free. So, documents in PDF form
can be viewed easily on virtually any machine. But, because they are delivered like graphic
images, they cannot by edited without Adobe’s proprietary editing (writing) software,
which is expensive.

iv. store everything as PDF.
strengths: compatible; readers are free

weaknesses: editing documents can be expensive because special software must be
purchased and installed on any machine that edits.

A number of organizations have adopted an entirely different solution: create Web
pages for the documents! And, as you may have noticed, a lot of companies archive their
text information in this form. How good a solution is it?

Web documents are actually text that includes markup symbols. The markup codes
instruct the client computer (that received the document from some Web server) how to
display it. Web pages are typically encoded using Hypertext Markup Language (HTML)
or Extended HTML (XHTML).

v. store everything as HTML or XHTML.
strengths: compatible, inexpensive to distribute.

weaknesses: conversion of legacy documents to HTML is not trivial (and can be
expensive).

Here is a short example,

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<!-- this is a comment -->
<!DOCTYPE html "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" lang="en">
<head>
<title>The title</title>
</head>
<body>
<p>Some paragraph.</p>
</body>
</html>

XML is another markup language that can be used to organize text information from
both documents and databases. XML is actually an ancestor of HTML and XHTML.
Specifically, Extensible Markup Language (XML) is a markup language that defines its
own set of rules for encoding text documents. It is intended to be a format that makes the
document readable by both humans and machines.

<?xml version="1.0"7>
<quiz>
<question>
Who was the forty-second
president of the U.S.A.?
</question>
<answer>
William Jefferson Clinton
</answer>

</quiz>
(XML

The example shows how an arbitrary document type can include semantic information
along with the text content.

A database often contains information that requires some interpretation and
reorganization by human users before the data can be employed by applications
automatically. Take, for example, this simple text database. The first line indicates field
names. The remaining lines of text are individual employee records,

name,dateOfBirth,dept, jobTitle
John,1962-11-24,accounting,senior accountant
Tina,1962-09-26,administration,manager
Karen,1972-01-10, marketing,graphic designer
Michael, 1978-02-11,research, programmer
Sandra,1976-10-26 ,marketing,account manager

When converted to XML format, it might look like this.

<employees>
<employee>
<name>John</name>
<dateOfBirth>1962-11-24</dateOfBirth>
<dept>accounting</dept>
<jobTitle>senior accountant</jobTitle>
</employee>
<employee>
<name>Tina</name>
<dateOfBirth>1962-09-26</dateOfBirth>
<dept>administration</dept>
<jobTitle>manager</jobTitle>
</employee>
<!-- and so forth -->
</employees>

The principal advantage is that this data could be used by other applications without
the need for humans reorganizing the data.

vi. store everything as XML. (same as before)
strengths: compatible, inexpensive to distribute.

weaknesses: conversion of legacy documents to XML is not trivial (and can be
expensive).

-10-

