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http://www.cs.cornell.edu/home/kleinber/networks-book/networks-book-ch02.pdf

Nodes: students in
a large American

high school

Edges (undirected):
romantic
relationships
during a 18-
month period
being studied

Bearman, Moody,
Stovel. American
Journal of Sociology,
110(1), 2004



Global Epidemic and Mobility
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http://barabasilab.neu.edu/courses/phys5116/content/Class1_NetSci_2018/01_CLASS_R2012_Introduction.pdf



Predicting the HIN1 pandemic
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http://barabasilab.neu.edu/courses/phys5116/content/Class1_NetSci_2012/01_CLASS_R012_Introduction.pdf



The Internet
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http://barabasilab.neu.edu/courses/phys5116/content/Class1_NetSci_2012/01_CLASS_R012_Introduction.pdf



Social Graph behind Facebook

Keith Shepherd’s “Sunday Best.” http://baseballart.com/2010/07/shades-of-greatness-a-story-that-needed-to-be-told/
http://barabasilab.neu.edu/courses/phys5116/content/Class1_NetSci_2012/01_CLASS_R012_Introduction.pdf



Nodes, edges, and degrees

* A graph is specified by (V, E)
— Vis a set of nodes (or vertices)

— E is a set of edges, each connecting two nodes
* Can be undirected (e.g., friendships) or directed
(e.g., links between Web pages)

* Degree of a node v: # edges incident to v
— For directed graphs, a node has
an in-degree (# incoming edges) and
an out-degree (# outgoing edges)



Paths and connectivity

* A pathis a walk (along edges) from one node
to another in a graph

— For directed graphs, edge directions matter

* Distance from node v; to node v,: length of
shortest path from v, to v, (in # edges)

* A (strongly) connected component is a subset
of nodes such that

— Every node in the subset has a path to every other

— This subset is maximal; i.e., it is not part of some
larger set with the above property
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Some 1important statistics

* Degree distribution

 Distance distribution
— Diameter: maximum distance

* Clustering coefficient of node v is the
probability that two nodes directly linked to
v are also directly linked to each other

Between 0 and 1
Higher = more “clustered”

C(v)=2/(4X3/2)=1/3 C(v)=6/(4X3/2) =1



A simple model: random graph

N nodes; draw an edge between each pair

by a preset probability p

https://www.cs.purdue.edu/homes/dgleich/demos/matlab/random_graphs/erdosreyni.html



Degrees in G
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* Binomial with mean <k) = Np
— Approximated by bell curve

http://en.wikipedia.org/wiki/File:Binomial_distribution_pmf.svg
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Distances in G

random

* Diameter = In N / In <k)
— Imagine a breadth-first search

— Each hop expands the

neighborhood by about <k)

* We might get a previously
visited node, but the chance
is small unless a significant portion of the graph
has already been covered

\\\\\\\\\\\

— The probability of missing a node after
enough hops is very small



Clustering coefficients in G

random

* Give node v, for each pair of v’s neighbors,
the probability is p
— By definition of random graph

* S0 v’s clustering coefficient is p =<k) / N



Case study: social network

Keith Shepherd’s “Sunday Best.” http://baseballart.com/2010/07/shades-of-greatness-a-story-that-needed-to-be-told/
http://barabasilab.neu.edu/courses/phys5116/content/Class1_NetSci_2012/01_CLASS_R012_Introduction.pdf
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6 degrees of Kevin Bacon

Everyone is six or fewer steps away from
any other person in the world,
via a chain of “a friend of a friend”

2,094,965 people +1'd or follow Barack Obama
Get Involved - Donate Now - Volunteer for Obama 2012

Barack Obama's Bacon number is 2

Barack Obama and Tom Hanks appeared in The Road We've Traveled.
Tom Hanks and Kevin Bacon appeared in Apollo 13.

Barack H. Obama, 44th President of the USA i

www.geni.com/../Kevin+Norwood+Bacon+is+related+to
Barack H. Obama, 44th President of the USA is Kevin
Bacon. —. We found the path you requested to Barack h

http://www.hollywoodreporter.com/heat-vision/kevin-bacon-google-six-degrees-869927
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Distance distribution, Facebook

c 2- e .
i o] Small-world property:
go] most nodes are not
£ 2 directly connected, yet
£, | they can be reached
5 from every other by a
£ ° small number of hops
5 24 Facebook 2011
o I | | ! ! !

0 2 4 6 8 10

hop distance

In this regard, social networks are

ond--
O] )
very similar to random graphspul wé

Ugander et al. The Anatomy of the Facebook Social Graph, 2011. http://arxiv.org/pdf/1111.4503.pdf
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Prevalence of friadic closure

T 05N Vs Bt
I'EWEIMHHHQT

If two people
have a common
friend, then there
s is a higher chance
that they will

become friends

* High “clusteredness”
as measured by
clustering coefficient
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http://good-thinking.co.uk/tag/befriend/



Clustering coefficient, Facebook

N — Mean Really high compared
& B . - - - 5/95th Pct : |
Qo with a random graph!
Qo
E'J’ g - * Crandom ~ <k>/N
g 7 * Average # friends <200
S0
° 3] — Median: 99
(@)
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< - Facebook 2011
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Degree
In this regard, social networks are very “clustered” and
very different from random graph!

Ugander et al. The Anatomy of the Facebook Social Graph, 2011. http://arxiv.org/pdf/1111.4503.pdf
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Puzzle

How can a social network be so “clustered” yet
offer such short distances?

E.g., road networks H; {\ v

ux Falls

have “local links” ‘ A

dar
O aha

* Relatively high i
clustering coefficients

T

 But not a small world!

Da;las -

http://barabasilab.neu.edu/courses/phys5116/content/Class4_NetSci_2012/04_CLASS_2012_Scale-Free_Property.pdf
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Explanation by Watts-Strogatz

* Start with a lattice network
* “Rewire” every edge randomly with probability f3
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http://barabasilab.neu.edu/courses/phys5116/content/Class5_NetSci_2012/05_CLASS_2012_The_Small_World.pdf



Degree distribution, random

Bell Curve
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Number of links (k)
» Watts-Strogatz also gives you a bell curve
— If social networks really behave this way,
there will be no individuals who are either
immensely popular or extremely recluse

http://barabasilab.neu.edu/courses/phys5116/content/Class4_NetSci_2012/04_CLASS_2012_Scale-Free_Property.pdf
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Degree distribution, Youtube’

Cumulative, log-log
1r

E o NG 1 Distribution has a
:'é,, 0.0001 [N . ”heavy tail”;i.e., some
$ esr 1 individuals (albeit a
T e small number) have a
Y oo huge number of friends
?.,, 0.0001 An exponential tail
% 1e-06 (e.g., bell curve) would
1e-08 | - o look like this
Degree *We will come back to Facebook later

Mislove et al. , 2011. “Measurement and analysis of online social networks.” IMC 2007
http://conferences.sigcomm.org/ime/2007/papers/imel70.pdf



Explanation: rich-get-richer

Barabasi-Albert
* Start with a initial graph of size m,
* Add new nodes one at a time

— Each connects to m < m, existing nodes with
probability proportional to # existing edges
they already have

See http://en.wikipedia.org/wiki/Preferential attachment

for a more general formulation
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Implication of Barabasi-Albert

* Degree distribution: power law
P(k) o< k7, or equivalently P(K > k) oc k7"

— Sometimes such graphs are called scale-free
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http://barabasilab.neu.edu/courses/phys5116/content/Class4_NetSci_2012/04_CLASS_2012_Scale-Free_Property.pdf



Exponential vs. power law

Bell Curve . Power Law Distribution
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http://barabasilab.neu.edu/courses/phys5116/content/Class4_NetSci_2018/04_CLASS_2012_Scale-Free_Property.pdf



Other implications of B-A

* Average distance o< In N/ (In In N)
— Small world, again
» Empirically, clustering coefficient = O(N ~%7°)

— Better than random, but still not as clustered as real
social networks

* A few highly connected hubs hold network together
— Robust against random node failures, yet
— Fragile again targeted attacks

Note:

* Barabasi-Albert is just one way to get power law graphs

« Implications above don’t necessarily follow from having a power law degree
distribution

* A good read: Li et al. “Towards a Theory of Scale-Free Graphs: Definition,
Properties, and Implications.” Internet Mathematics, 2005



Power law observed in real life

* Internet backbone, Web graph, many
social networks (including co-authoring
and co-acting graphs), protein-protein
interaction network, etc.

— At least for some range of k

 But oftentimes researchers rush to
conclusion

* ... validation of power-law claims

remains a very active field of research...
http://en.wikipedia.org/wiki/Power_law#Validating power_laws
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Degree distribution, Facebook
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Visual identification is often useful but can sometimes mislead
(If you have to, always use the cumulative distribution)

Ugander et al. The Anatomy of the Facebook Social Graph, 2011. http://arxiv.org/pdf/1111.4503.pdf



Recap

 Simple stats to keep in mind when looking
at a big graph

— Degree distribution, distance distribution,
clustering coefficient

* Interesting characteristics of some graphs

— Power law, small world, triadic closure

* “All models are wrong, but some are
useful.” — George E. P. Box
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Representing graphs

A database pérson or mathematzczan ?

http://en.wikipedia.org/wiki/File:Edgar_F_Codd.jp§  http://en.wikipedia.org/wiki/File:Carl_Friedrich_Gauss.jpg



Relational representation

Store edges in a table edge(sre, tgt, ...)

Can also include edge
a b

properties, e.g., weight,

: type, etc. in “...”

a
b
b d
d a

Optionally, store nodes in a table node(id, ...)

Can include node

properties, e.g., name,

1 144

a
b annotation, etc., in “...

QO



Matrix representation

a

b
b/ / ( C

— O O O =

d

b

oSO O =

1
1
0
0

O = O X

O -

=11if i — j, or 0 otherwise
— Or use the value to code edge weight

* Remember the mapping between
node ids and row/column indexes




2-hop neighbors

Relational: Matrix:

SELECT el.sre, e2.tgt E x E, or simply E’
FROM edge el, edge e « What's the value of
WHERE el.tgt = eR.src; result entry (i, j)?

 What's the count of
(a, b) in the result?

How about 3-hop, 4-hop, ..., n-hop?



Next time

* Measures of “centrality” (how important
nodes/edges are)

* Scalable graph data processing



