Graph Data

Everything Data CompSci 290.01 Spring 2014

An example

Nodes: students in a large American high school

Edges (undirected): romantic relationships during a 18month period being studied

> Bearman, Moody, Stovel. *American Journal of Sociology*, 110(1), 2004

Global Epidemic and Mobility

Predicting the H1N1 pandemic

Real

Projected

http://www.gleamviz.org/ http://barabasilab.neu.edu/courses/phys5116/content/Class1_NetSci_2012/01_CLASS_2012_Introduction.pdf

The Internet

 $http://barabasilab.neu.edu/courses/phys5116/content/Class1_NetSci_2012/01_CLASS_2012_Introduction.pdf$

Social Graph behind Facebook

Keith Shepherd's "Sunday Best." http://baseballart.com/2010/07/shades-of-greatness-a-story-that-needed-to-be-told/ http://barabasilab.neu.edu/courses/phys5116/content/Class1_NetSci_2012/01_CLASS_2012_Introduction.pdf

Nodes, edges, and degrees

- A graph is specified by (*V*, *E*)
 - -*V* is a set of *nodes* (or *vertices*)
 - *E* is a set of *edges*, each connecting two nodes
 - Can be *undirected* (e.g., friendships) or *directed* (e.g., links between Web pages)
- **Degree** of a node *v*: # edges incident to *v*
 - For directed graphs, a node has an *in-degree* (# incoming edges) and an *out-degree* (# outgoing edges)

Paths and connectivity

- A *path* is a walk (along edges) from one node to another in a graph
 - For directed graphs, edge directions matter
- **Distance** from node v_1 to node v_2 : length of shortest path from v_1 to v_2 (in # edges)
- A (strongly) *connected component* is a subset of nodes such that
 - Every node in the subset has a path to every other
 - This subset is *maximal*; i.e., it is not part of some larger set with the above property

Some important statistics

- Degree distribution
- Distance distribution
 - **Diameter**: maximum distance
- *Clustering coefficient* of node v is the probability that two nodes directly linked to *v* are also directly linked to each other

 $C(v) = 2 / (4 \times 3/2) = 1/3$ $C(v) = 6 / (4 \times 3/2) = 1$

A simple model: random graph

N nodes; draw an edge between each pair by a preset probability *p*

p = 0

Degrees in *G*_{random}

Binomial with mean ⟨k⟩ = Np
Approximated by bell curve

 $http://en.wikipedia.org/wiki/File:Binomial_distribution_pmf.svg$

Distances in *G*_{random}

- Diameter $\approx \ln N / \ln \langle k \rangle$
 - Imagine a breadth-first search
 - Each hop expands the neighborhood by about $\langle k \rangle$

- We might get a previously visited node, but the chance is small unless a significant portion of the graph has already been covered
- The probability of missing a node after enough hops is very small

13

Clustering coefficients in *G*_{random}

• Give node *v*, for each pair of *v*'s neighbors, the probability is *p*

– By definition of random graph

• So *v*'s clustering coefficient is $p = \langle k \rangle / N$

Case study: social network

Keith Shepherd's "Sunday Best." http://baseballart.com/2010/07/shades-of-greatness-a-story-that-needed-to-be-told/ http://barabasilab.neu.edu/courses/phys5116/content/Class1_NetSci_2012/01_CLASS_2012_Introduction.pdf

6 degrees of Kevin Bacon

Everyone is six or fewer steps away from any other person in the world, via a chain of "a friend of a friend"

> 2,094,965 people +1'd or follow Barack Obama Get Involved - Donate Now - Volunteer for Obama 2012

Barack Obama's Bacon number is 2

Barack Obama and Tom Hanks appeared in The Road We've Traveled. Tom Hanks and Kevin Bacon appeared in Apollo 13.

Barack H. Obama, 44th President of the USA is www.geni.com/.../Kevin+Norwood+Bacon+is+related+to Barack H. Obama, 44th President of the USA is Kevin Bacon. →. We found the path you requested to Barack H.

http://www.hollywoodreporter.com/heat-vision/kevin-bacon-google-six-degrees-369927

Distance distribution, Facebook

Prevalence of *triadic closure*

If two people have a common friend, then there is a higher chance that they will become friends

 High "clusteredness" as measured by clustering coefficient

Clustering coefficient, Facebook

Really high compared with a random graph!

- $C_{\text{random}} \approx \langle k \rangle / N$
- Average # friends < 200
 Median: 99
- # nodes: 721 million

In this regard, social networks are very "clustered" and very different from random graph!

Ugander et al. The Anatomy of the Facebook Social Graph, 2011. http://arxiv.org/pdf/1111.4503.pdf

Puzzle

How can a social network be so "clustered" yet offer such short distances?

- E.g., road networks have "local links"
- Relatively high clustering coefficients
- But not a small world!

Explanation by *Watts-Strogatz*

- Start with a lattice network
- "Rewire" every edge randomly with probability β

It takes a lot of randomness to ruin "clusteredness," but a very small amount to overcome "locality"

 $http://barabasilab.neu.edu/courses/phys5116/content/Class5_NetSci_2012/05_CLASS_2012_The_Small_World.pdf$

Degree distribution, random

Number of links (k)

Watts-Strogatz also gives you a bell curve

 If social networks really behave this way,
 there will be no individuals who are either
 immensely popular or extremely recluse

 $http://barabasilab.neu.edu/courses/phys5116/content/Class4_NetSci_2012/04_CLASS_2012_Scale-Free_Property.pdf$

Degree distribution, Youtube*

Distribution has a "heavy tail"; i.e., some individuals (albeit a small number) have a huge number of friends — An exponential tail (e.g., bell curve) would look like this

**We will come back to Facebook later*

Mislove et al. , 2011. "Measurement and analysis of online social networks." *IMC* 2007 http://conferences.sigcomm.org/imc/2007/papers/imc170.pdf

Explanation: rich-get-richer

Barabasi-Albert

- Start with a initial graph of size *m*₀
- Add new nodes one at a time
 - Each connects to $m \le m_0$ existing nodes with probability proportional to # existing edges they already have

See <u>http://en.wikipedia.org/wiki/Preferential_attachment</u> for a more general formulation

Implication of Barabasi-Albert

- Degree distribution: *power law* $P(k) \propto k^{-\gamma}$, or equivalently $P(K \ge k) \propto k^{-\gamma+1}$
 - Sometimes such graphs are called *scale-free*

http://barabasilab.neu.edu/courses/phys5116/content/Class4_NetSci_2012/04_CLASS_2012_Scale-Free_Property.pdf

Exponential vs. power law

 $http://barabasilab.neu.edu/courses/phys5116/content/Class4_NetSci_2012/04_CLASS_2012_Scale-Free_Property.pdf$

Other implications of *B*-*A*

- Average distance $\propto \ln N / (\ln \ln N)$
 - Small world, again
- Empirically, clustering coefficient = $O(N^{-0.75})$
 - Better than random, but still not as clustered as real social networks
- A few highly connected hubs hold network together
 - *Robust* against random node failures, yet
 - *Fragile* again targeted attacks

Note:

- *Barabasi-Albert* is just one way to get power law graphs
- Implications above don't necessarily follow from having a power law degree distribution
- A good read: Li et al. "Towards a Theory of Scale-Free Graphs: Definition, Properties, and Implications." *Internet Mathematics*, 2005

Power law observed in real life

- Internet backbone, Web graph, many social networks (including co-authoring and co-acting graphs), protein-protein interaction network, etc.
 - At least for some range of *k*
- But oftentimes researchers rush to conclusion
- ... validation of power-law claims remains a very active field of research... http://en.wikipedia.org/wiki/Power_law#Validating_power_laws

Degree distribution, Facebook

Visual identification is often useful but can sometimes mislead (If you have to, always use the cumulative distribution)

Ugander et al. The Anatomy of the Facebook Social Graph, 2011. http://arxiv.org/pdf/1111.4503.pdf

Recap

- Simple stats to keep in mind when looking at a big graph
 - Degree distribution, distance distribution, clustering coefficient
- Interesting characteristics of some graphs
 Power law, small world, triadic closure
- "All models are wrong, but some are useful." – George E. P. Box

Representing graphs

A database person or mathematician?

http://en.wikipedia.org/wiki/File:Edgar_F_Codd.jpg http://en.wikipedia.org/wiki/File:Carl_Friedrich_Gauss.jpg

Relational representation

Store edges in a table edge(src, tgt, ...)

SrC	tgt
а	Ь
а	С
Ь	С
b	d
d	а

Can also include edge properties, e.g., weight, type, etc. in "…"

Optionally, store nodes in a table node(id, ...)

id	
а	
Ь	
С	
d	

Can include node properties, e.g., name, annotation, etc., in "…"

Matrix representation

$$\begin{bmatrix} a & b & c & d \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} = E$$

- *e*_{*i*, *j*} = 1 if *i* → *j*, or 0 otherwise
 Or use the value to code edge weight
- Remember the mapping between node ids and row/column indexes

2-hop neighbors

Relational: SELECT el.src, e2.tgt FROM edge el, edge e2 WHERE el.tgt = e2.src;

• What's the count of (*a*, *b*) in the result?

Matrix:

 $E \times E$, or simply E^2

• What's the value of result entry (*i*, *j*)?

How about 3-hop, 4-hop, ..., *n*-hop?

Next time

- Measures of "centrality" (how important nodes/edges are)
- Scalable graph data processing