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In February 2013, during the third quarter of Super Bowl XLVII, a power
outage stopped the game for 34 minutes. Oreo, a sandwich cookie com-
pany, tweeted during the outage: “Power out? No Problem, You can still
dunk it in the dark.” The tweet caught on almost immediately, reaching
nearly 15,000 retweets and 20,000 likes on Facebook in less than two days.
A simple tweet diffused into a large population of individuals. It helped
the company gain fame with minimum cost in an environment where
companies spent as much as $4 million to run a 30-second ad. This is an
example of information diffusion.

Information diffusion is a field encompassing techniques from a plethora
of sciences. In this chapter, we discuss methods from fields such as sociol-
ogy, epidemiology, and ethnography, which can help social media mining.
Our focus is on techniques that can model information diffusion.

Societies provide means for individuals to exchange information through
various channels. For instance, people share knowledge with their imme-
diate network (friends) or broadcast it via public media (TV, newspapers,
etc.) throughout the society. Given this flow of information, different
research fields have disparate views of what is an information diffusion
process. We define information diffusion as the process by which a piece of
information (knowledge) is spread and reaches individuals through interactions.
The diffusion process involves the following three elements:

1. Sender(s). A sender or a small set of senders initiate the information
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diffusion process.

2. Receiver(s). A receiver or a set of receivers receive diffused informa-
tion. Commonly, the set of receivers is much larger than the set of
senders and can overlap with the set of senders.

3. Medium. This is the medium through which the diffusion takes
place. For example, when a rumor is spreading, the medium can be
the personal communication between individuals.

This definition can be generalized to other domains. In a disease-
spreading process, the disease is the analog to the information, and infec-
tion can be considered a diffusing process. The medium in this case is the
air shared by the infecter and the infectee. An information diffusion can
be interrupted. We define the process of interfering with information dif-
fusion by expediting, delaying, or even stopping diffusion as intervention.Intervention

Individuals in online social networks are situated in a network where
they interact with others. Although this network is at times unavailable
or unobservable, the information diffusion process takes place in it. In-
dividuals facilitate information diffusion by making individual decisions
that allow information to flow. For instance, when a rumor is spreading,
individuals decide if they are interested in spreading it to their neighbors.
They can make this decision either dependently (i.e., depending on the
information they receive from others) or independently. When they make
dependent decisions, it is important to gauge the level of dependence that
individuals have on others. It could be local dependence, where an indi-
vidual’s decision is dependent on all of his or her immediate neighbors
(friends) or global dependence, where all individuals in the network are
observed before making decisions.Local and Global

Dependence In this chapter, we present in detail four general types of information
diffusion: herd behavior, information cascades, diffusion of innovation, and
epidemics.

Herd behavior takes place when individuals observe the actions of all
others and act in an aligned form with them. An information cascade
describes the process of diffusion when individuals merely observe their
immediate neighbors. In information cascades and herd behavior, the net-
work of individuals is observable; however, in herding, individuals decide
based on global information (global dependence); whereas, in information
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Figure 7.1: Information Diffusion Types.

cascades, decisions are made based on knowledge of immediate neighbors
(local dependence).

Diffusion of innovations provides a bird’s-eye view of how an innova-
tion (e.g., a product, music video, or fad) spreads through a population. It
assumes that interactions among individuals are unobservable and that the
sole available information is the rate at which products are being adopted
throughout a certain period of time. This information is particularly inter-
esting for companies performing market research, where the sole available
information is the rate at which their products are being bought. These
companies have no access to interactions among individuals. Epidemic
models are similar to diffusion of innovations models, with the difference
that the innovation’s analog is a pathogen and adoption is replaced by in-
fection. Another difference is that in epidemic models, individuals do not
decide whether to become infected or not and infection is considered a ran-
dom natural process, as long as the individual is exposed to the pathogen.
Figure 7.1 summarizes our discussion by providing a decision tree of the
information diffusion types.
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7.1 Herd Behavior

Consider people participating in an online auction. Individuals are con-
nected via the auction’s site where they cannot only observe the bidding
behaviors of others but can also often view profiles of others to get a feel
for their reputation and expertise. Individuals often participate actively in
online auctions, even bidding on items that might otherwise be considered
unpopular. This is because they trust others and assume that the high
number of bids that the item has received is a strong signal of its value. In
this case, herd behavior has taken place.

Herd behavior, a term first coined by British surgeon Wilfred [283],
describes when a group of individuals performs actions that are aligned
without previous planning. It has been observed in flocks, herds of an-
imals, and in humans during sporting events, demonstrations, and reli-
gious gatherings, to name a few examples. In general, any herd behavior
requires two components:

1. connections between individuals

2. a method to transfer behavior among individuals or to observe their
behavior

Individuals can also make decisions that are aligned with others (mind-
less decisions) when they conform to social or peer pressure. A well-known
example is the set of experiments performed by Solomon Asch during the
1950s [17]. In one experiment, he asked groups of students to participateSolomon Asch

Conformity
Experiment

in a vision test where they were shown two cards (Figure 7.2), one with
a single line segment and one with three lines, and told to match the line
segments with the same length.

Each participant was put into a group where all the other group mem-
bers were actually collaborators with Asch, although they were introduced
as participants to the subject. Asch found that in control groups with no
pressure to conform, in which the collaborators gave the correct answer,
only 3% of the subjects provided an incorrect answer. However, when par-
ticipants were surrounded by individuals providing an incorrect answer,
up to 32% of the responses were incorrect.

In contrast to this experiment, we refer to the process in which indi-
viduals consciously make decisions aligned with others by observing the
decisions of other individuals as herding or herd behavior. In theory, there is
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Figure 7.2: Solomon Asch Experiment. Participants were asked to match
the line on the left card to the line on the right card that has the exact same
length.

no need to have a network of people. In practice, there is a network, and
this network is close to a complete graph, where nodes can observe at least
most other nodes. Consider this example of herd behavior.

Example 7.1. Diners Example [23]. Assume you are visiting a metropolitan
area that you are not familiar with. Planning for dinner, you find restaurant A
with excellent reviews online and decide to go there. When arriving at A, you see
that A is almost empty and that restaurant B, which is next door and serves the
same cuisine, is almost full. Deciding to go to B, based on the belief that other
diners have also had the chance of going to A, is an example of herd behavior.

In this example, when B is getting more and more crowded, herding is
taking place. Herding happens because we consider crowd intelligence trust-
worthy. We assume that there must be private information not known to
us, but known to the crowd, that resulted in the crowd preferring restaurant
B over A. In other words, we assume that, given this private information,
we would have also chosen B over A.

In general, when designing a herding experiment, the following four
conditions need to be satisfied:

1. There needs to be a decision made. In this example, the decision
involves going to a restaurant.

2. Decisions need to be in sequential order.
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3. Decisions are not mindless, and people have private information that
helps them decide.

4. No message passing is possible. Individuals do not know the private
information of others, but can infer what others know from what
they observe from their behavior.

Anderson and Holt [11, 12] designed an experiment satisfying these
four conditions, in which students guess whether an urn containing red
and blue marbles is majority red or majority blue. Each student had access
to the guesses of students beforehand. Anderson and Holt observed a herd
behavior where students reached a consensus regarding the majority color
over time. It has been shown [78] that Bayesian modeling is an effective
technique for demonstrating why this herd behavior occurs. Simply put,
computing conditional probabilities and selecting the most probable ma-
jority color result in herding over time. We detail this experiment and how
conditional probabilities can explain why herding takes place next.

7.1.1 Bayesian Modeling of Herd Behavior

In this section, we show how Bayesian modeling can be used to explain
herd behavior by describing in detail the urn experiment devised by An-
derson and Holt [11, 12]. In front of a large class of students, there is an urn
that has three marbles in it. These marbles are either blue (B) or red (R), and
we are guaranteed to have at least one of each color. So, the urn is either
majority blue (B,B,R) or majority red (R,R,B). We assume the probability of
being either majority blue or majority red is 50%. During the experiment,
each student comes to the urn, picks one marble, and checks its color in
private. The student predicts majority blue or red, writes the prediction on
the blackboard (which was blank initially), and puts the marble back in the
urn. Other students cannot see the color of the marble taken out, but can
see the predictions made by the students regarding the majority color and
written on the blackboard. Let the BOARD variable denote the sequence
of predictions written on the blackboard. So, before the first student, it is
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We start with the first student. If the marble selected is red, the predic-
tion will be majority red; if blue, it will be majority blue. Assuming it was
blue, on the board we have

The second student can pick a blue or a red marble. If blue, he also
predicts majority blue because he knows that the previous student must
have picked blue. If red, he knows that because he has picked red and
the first student has picked blue, he can randomly assume majority red or
blue. So, after the second student we either have

Assume we end up with BOARD: {B, B}. In this case, if the third student
takes out a red ball, the conditional probability is higher for majority blue,
although she observed a red marble. Hence, a herd behavior takes place,
and on the board, we will have BOARD: {B,B,B}. From this student and
onward, independent of what is being observed, everyone will predict
majority blue. Let us demonstrate why this happens based on conditional
probabilities and our problem setting. In our problem, we know that the
first student predicts majority blue if P(majority blue|student’s obervation) >
1/2 and majority red otherwise. We also know from the experiments setup
that

P(majority blue) = P(majority red) = 1/2, (7.1)
P(blue|majority blue) = P(red|majority red) = 2/3. (7.2)

Let us assume that the first student observes blue; then,

P(majority blue|blue) =
P(blue|majority blue)P(majority blue)

P(blue)
(7.3)

P(blue) = P(blue|majority blue)P(majority blue)
+ P(blue|majority red)P(majority red) (7.4)

= 2/3 × 1/2 + 1/3 × 1/2 = 1/2. (7.5)
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Therefore, P(majority blue|blue) = 2/3×1/2
1/2 = 2/3. So, if the first student

picks blue, she will predict majority blue, and if she picks red, she will
predict majority red. Assuming the first student picks blue, the same
argument holds for the second student; if blue is picked, he will also
predict majority blue. Now, in the case of the third student, assuming she
has picked red, and having BOARD: {B,B} on the blackboard, then,

P(majority blue|blue, blue, red) =
P(blue,blue,red|majority blue)

P(blue,blue,red)
×P(majority blue) (7.6)

P(blue, blue, red|majority blue) = 2/3 × 2/3 × 1/3 = 4/27 (7.7)
P(blue, blue, red) = P(blue, blue, red|majority blue)

×P(majority blue)
+ P(blue, blue, red|majority red)
×P(majority red) (7.8)

= (2/3 × 2/3 × 1/3) × 1/2
+ (1/3 × 1/3 × 2/3) × 1/2 = 1/9.

Therefore, P(majority blue|blue,blue,red) = 4/27×1/2
1/9 = 2/3. So, the third

student predicts majority blue even though she picks red. Any student
after the third student also predicts majority blue regardless of what is
being picked because the conditional remains above 1/2. Note that the
urn can in fact be majority red. For instance, when blue, blue, red is picked,
there is a 1 −2/3 =1 /3 chance that it is majority red; however, due to
herding, the prediction could become incorrect. Figure 7.3 depicts the
herding process. In the figure, rectangles represent the board status, and
edge values represent the observations. Dashed arrows depict transitions
between states that contain the same statistical information that is available
to the students.

7.1.2 Intervention

As herding converges to a consensus over time, it is interesting how one can
intervene with this process. In general, intervention is possible by provid-
ing private information to individuals that was not previously available.
Consider an urn experiment where individuals decide on majority red over
time. Either (1) a private message to individuals informing them that the
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Figure 7.3: Urn Experiment. Rectangles represent student predictions
written on the blackboard, and edge values represent what the students
observe. Rectangles are filled with the most likely majority, computed
from conditional probabilities.

urn is majority blue or (2) writing the observations next to predictions on
the board stops the herding and changes decisions.

7.2 Information Cascades

In social media, individuals commonly repost content posted by others
in the network. This content is often received via immediate neighbors
(friends). An information cascade occurs as information propagates through
friends.

Formally, an information cascade is defined as a piece of information
or decision being cascaded among a set of individuals, where (1) individ-
uals are connected by a network and (2) individuals are only observing

225



decisions of their immediate neighbors (friends). Therefore, cascade users
have less information available to them compared to herding users, where
almost all information about decisions are available.

There are many approaches to modeling information cascades. Next,
we introduce a basic model that can help explain information cascades.

7.2.1 Independent Cascade Model (ICM)

In this section, we discuss the independent cascade model (ICM) [146]
that can be utilized to model information cascades. Variants of this model
have been discussed in the literature. Here, we discuss the one detailed by
Kempe et al. [146]. Interested readers can refer to the bibliographic notes
for further references. Underlying assumptions for this model include the
following:

• The network is represented using a directed graph. Nodes are actors
and edges depict the communication channels between them. A
node can only influence nodes that it is connected to.

• Decisions are binary – nodes can be either active or inactive. An active
nodes means that the node decided to adopt the behavior, innovation,
or decision.

• A node, once activated, can activate its neighboring nodes.

• Activation is a progressive process, where nodes change from inactive
to active, but not vice versa.1

Considering nodes that are active as senders and nodes that are being
activated as receivers, in the independent cascade model (ICM) senders
activate receivers. Therefore, ICM is denoted as a sender-centric model. InSender-Centric

Model this model, the node that becomes active at time t has, in the next time step
t + 1, one chance of activating each of its neighbors. Let v be an active node
at time t. Then, for any neighbor w, there is a probability pv,w that node w
gets activated at t+1. A node v that has been activated at time t has a single
chance of activating its neighbor w and that activation can only happen at
t + 1. We start with a set of active nodes and we continue until no further
activation is possible. Algorithm 7.1 details the process of the ICM model.

1This assumption can be lifted [146].
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Algorithm 7.1 Independent Cascade Model (ICM)
Require: Diffusion graph G(V,E), set of initial activated nodes A0, activa-

tion probabilities pv,w

1: return Final set of activated nodes A∞
2: i = 0;
3: while Ai , {} do
4:
5: i = i + 1;
6: Ai = {};
7: for all v ∈ Ai−1 do
8: for all w neighbor of v,w < ∪i

j=0 A j do
9: rand = generate a random number in [0,1];

10: if rand < pv,w then
11: activate w;
12: Ai = Ai ∪ {w};
13: end if
14: end for
15: end for
16: end while
17: A∞ = ∪i

j=0A j;
18: Return A∞;

Example 7.2. Consider the network in Figure 7.4 as an example. The network is
undirected; therefore, we assume pv,w = pw,v. Since it is undirected, for any two
vertices connected via an edge, there is an equal chance of one activating the other.
Consider the network in step 1. The values on the edges denote pv,w’s. The ICM
procedure starts with a set of nodes activated. In our case, it is node v1. Each
activated node gets one chance of activating its neighbors. The activated node
generates a random number for each neighbor. If the random number is less than
the respective pv,w of the neighbor (see Algorithm 7.1, lines 9–11), the neighbor
gets activated. The random numbers generated are shown in Figure 7.4 in the
form of inequalities, where the left-hand side is the random number generated and
the right-hand side is the pv,w. As depicted, by following the procedure after five
steps, five nodes get activated and the ICM procedure converges.
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Figure 7.4: Independent Cascade Model (ICM) Simulation. The numbers
on the edges represent the weights pv,w. When there is an inequality, the
activation condition is checked. The left number denotes the random
number generated, and the right number denotes weight pv,w.

Clearly, the ICM characterizes an information diffusion process.2 It
is sender-centered, and once a node is activated, it aims to activate all
its neighboring nodes. Node activation in ICM is a probabilistic process.
Thus, we might get different results for different runs.

One interesting question when dealing with the ICM model is that
given a network, how to activate a small set of nodes initially such that the
final number of activated nodes in the network is maximized. We discuss
this next.

2See [112] for an application in the blogosphere.
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7.2.2 Maximizing the Spread of Cascades

Consider a network of users and a company that is marketing a prod-
uct. The company is trying to advertise its product in the network. The
company has a limited budget; therefore, not all users can be targeted.
However, when users find the product interesting, they can talk with their
friends (immediate neighbors) and market the product. Their neighbors,
in turn, will talk about it with their neighbors, and as this process pro-
gresses, the news about the product is spread to a population of nodes in
the network. The company plans on selecting a set of initial users such
that the size of the final population talking about the product is maximized.

Formally, let S denote a set of initially activated nodes (seed set) in ICM.
Let f (S) denote the number of nodes that get ultimately activated in the
network if nodes in S are initially activated. For our ICM example depicted
in Figure 7.4, |S| = 1 and f (S) = 5. Given a budget k, our goal is to find a
set S such that its size is equal to our budget |S| = k and f (S) is maximized.

Since the activations in ICM depend on the random number generated
for each node (see line 9, Algorithm 7.1), it is challenging to determine
the number of nodes that ultimately get activated f (S) for a given set S.
In other words, the number of ultimately activated individuals can be
different depending on the random numbers generated. ICM can be made
deterministic (nonrandom) by generating these random numbers in the
beginning of the ICM process for the whole network. In other words, we
can generate a random number ru,w for any connected pair of nodes. Then,
whenever node v has a chance of activating u, instead of generating the
random number, it can compare ru,w with pv,w. Following this approach,
ICM becomes deterministic, and given any set of initially activated nodes
S, we can compute the number of ultimately activated nodes f (S).

Before finding S, we detail properties of f (S). The function f (S) is non-
negative because for any set of nodes S, in the worst case, no node gets
activated. It is also monotone:

f (S ∪ {v}) ≥ f (S). (7.9)

This is because when a node is added to the set of initially activated nodes,
it either increases the number of ultimately activated nodes or keeps them
the same. Finally, f (S) is submodular. A set function f is submodular if Submodular

functionfor any finite set N,

∀S ⊂ T ⊂ N,∀v ∈ N \ T, f (S ∪ {v}) − f (S) ≥ f (T ∪ {v}) − f (T). (7.10)
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The proof that function f is submodular is beyond the scope of this
book, but interested readers are referred to [146] for the proof. So, f is non-
negative, monotone, and submodular. Unfortunately, for a submodular
non-negative monotone function f , finding a k element set S such that f (S)
is maximized is an NP-hard problem [146]. In other words, we know no
efficient algorithm for finding this set.3 Often, when a computationally
challenging problem is at hand, approximation algorithms come in handy.
In particular, the following theorem helps us approximate S.

Theorem 7.1 (Kempe et al. [146]). Let f be a (1) non-negative, (2) monotone,
and (3) submodular set function. Construct k-element set S, each time by adding
node v, such that f (S ∪ {v}) (or equivalently, f (S ∪ {v}) − f (s)) is maximized.
Let SOptimal be the k-element set such that f is maximized. Then f (S) ≥ (1 −
1
e ) f (SOptimal).

This theorem states that by constructing the set S greedily one can get at
least a (1 − 1/e) ≈ 63% approximation of the optimal value. Algorithm 7.2
details this greedy approach. The algorithm starts with an empty set S and
adds node v1, which ultimately activates most other nodes if activated.
Formally, v1 is selected such that f ({v1}) is the maximum. The algorithm
then selects the second node v2 such that f ({v1, v2}) is maximized. The pro-
cess is continued until the kth node vk is selected. Following this algorithm,
we find an approximately reasonable solution for the problem of cascade
maximization.

Example 7.3. For the following graph, assume that node i activates node j when
|i − j| ≡ 2 (mod 3). Solve cascade maximization for k = 2.

To find the first node v, we compute f ({v}) for all v. We start with node 1. At
time 0, node 1 can only activate node 6, because

|1 − 6| ≡ 2 (mod 3), (7.11)
3Formally, assuming P , NP, there is no polynomial time algorithm for this problem.
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Algorithm 7.2 Maximizing the spread of cascades – Greedy algorithm
Require: Diffusion graph G(V,E), budget k

1: return Seed set S (set of initially activated nodes)
2: i = 0;
3: S = {};
4: while i , k do
5: v = arg maxv∈V\S f (S ∪ {v});

or equivalently arg maxv∈V\S f (S ∪ {v}) − f (s)
6: S = S ∪ {v};
7: i = i + 1;
8: end while
9: Return S;

|1 − 5| . 2 (mod 3). (7.12)

At time 1, node 1 can no longer activate others, but node 6 is active and can
activate others. Node 6 has outgoing edges to nodes 4 and 5. From 4 and 5, node
6 can only activate 4:

|6 − 4| ≡ 2 (mod 3) (7.13)
|6 − 5| . 2 (mod 3). (7.14)

At time 2, node 4 is activated. It has a single out-link to node 2 and since
|4 − 2| ≡ 2 (mod 3), 2 is activated. Node 2 cannot activate other nodes; therefore,
f ({1}) = 4. Similarly, we find that f ({2}) = 1, f ({3}) = 1, f ({4}) = 2, f ({5}) = 1,
and f ({6}) = 4. So, 1 or 6 can be chosen for our first node. Let us choose 6. If 6
is initially activated, nodes 1, 2, 4, and 6 will become activated at the end. Now,
from the set {1, 2, 3, 4, 5, 6} \ {1, 2, 4, 6} = {3, 5}, we need to select one more node.
This is because in the setting for this example, f ({6, 1}) = f ({6, 2}) = f ({6, 4}) =
f ({6}) = 4. In general, one needs to compute f (S ∪ {v}) for all v ∈ V \ S (see
Algorithm 7.2, line 5). We have f ({6, 3}) = f ({6, 5}) = 5, so we can select one
node randomly. We choose 3. So, S = {6, 3} and f (S) = 5.

7.2.3 Intervention

Consider a false rumor spreading in social media. This is an example
where we are interested in stopping an information cascade in social media.
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Intervention in the independent cascade model can be achieved using three
methods:

1. By limiting the number of out-links of the sender node and potentially
reducing the chance of activating others. Note that when the sender
node is not connected to others via directed edges, no one will get
activated by the sender.

2. By limiting the number of in-links of receiver nodes and therefore
reducing their chance of getting activated by others.

3. By decreasing the activation probability of a node (pv,w) and therefore
reducing the chance of activating others.

7.3 Diffusion of Innovations

Diffusion of innovations is a phenomenon observed regularly in social me-
dia. A music video going viral or a piece of news being retweeted many
times are examples of innovations diffusing across social networks. As
defined by Rogers [239], an innovation is “an idea, practice, or object that
is perceived as new by an individual or other unit of adoption.” Innova-
tions are created regularly; however, not all innovations spread through
populations. The theory of diffusion of innovations aims to answer why
and how these innovations spread. It also describes the reasons behind
the diffusion process, the individuals involved, and the rate at which ideas
spread. In this section, we review characteristics of innovations that are
likely to be diffused through populations and detail well-known models
in the diffusion of innovations. Finally, we provide mathematical models
that can model the process of diffusion of innovations and describe how
we can intervene with these models.

7.3.1 Innovation Characteristics

For an innovation to be adopted, the individual adopting it (adopter) and
the innovation must have certain qualities.

Innovations must be highly observable, should have a relative advan-
tage over current practices, should be compatible with the sociocultural
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paradigm to which it is being presented, should be observable under var-
ious trials (trialability), and should not be highly complex.

In terms of individual characteristics, many researchers [239, 127] claim
that the adopter should adopt the innovation earlier than other members
of his or her social circle (innovativeness).

7.3.2 Diffusion of Innovations Models

Some of the earliest models for diffusion of innovations were provided by
Gabriel Tarde in the early 20th century [281]. In this section, we review
basic diffusion of innovations models. Interested readers may refer to the
bibliographical notes for further study.

Ryan and Gross: Adopter Categories

Ryan and Gross [242] studied the adoption of hybrid seed corn by farmers
in Iowa [266]. The hybrid seed corn was highly resistant to diseases and
other catastrophes such as droughts. However, farmers did not adopt it
because of its high price and the seed’s inability to reproduce. Their study
showed that farmers received information through two main channels:
mass communications from companies selling the seeds and interpersonal
communications with other farmers. They found that although farmers re-
ceived information from the mass channel, the influence on their behavior
was coming from the interpersonal channel. They argued that adoption
depended on a combination of information from both channels. They also
observed that the adoption rate follows an S-shaped curve and that there
are five different types of adopters based on the order in which they adopt
the innovations: (1) Innovators (top 2.5%), (2) Early Adopters (13.5%), (3)
Early Majority (34%), (4) Late Majority (34%), and (5) Laggards (16%). Fig-
ure 7.5 depicts the distribution of these adopters as well as the cumulative
adoption S-shaped curve. As shown in the figure, the adoption rate is slow
when innovators or early adopters adopt the product. Once early majority
individuals start adopting, the adoption curve becomes linear, and the rate
is constant until all late majority members adopt the product. After the late
majority adopts the product, the adoption rate becomes slow once again
as laggards start adopting, and the curve slowly approaches 100%.
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Figure 7.5: Types of Adopters and S-Shaped Cumulative Adoption Curve.

Katz: Two-Step Flow Model

Elihu Katz, a professor of communication at the University of Pennsyl-
vania, is a well-known figure in the study of the flow of information. In
addition to a study similar to the adoption of hybrid corn seed on how
physicians adopted the new tetracycline drug [59], Katz also developed a
two-step flow model (also known as the multistep flow model) [143] that de-
scribes how information is delivered through mass communication. The
basic idea is depicted in Figure 7.6. Most information comes from mass
media and is then directed toward influential figures called opinion leaders.
These leaders then convey the information (or form opinions) and act as
hubs for other members of the society.
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Figure 7.6: Katz Two-Step Flow Model.

Rogers: Diffusion of Innovations Process

Rogers in his well-known book, Diffusion of Innovations [239], discusses var-
ious theories regarding the diffusion of innovations process. In particular,
he describes a five stage process of adoption:

1. Awareness: In this stage, the individual becomes aware of the inno-
vation, but her information about the product is limited.

2. Interest: The individual shows interest in the product and seeks more
information.

3. Evaluation: The individual imagines using the product and decides
whether or not to adopt it.

4. Trial: The individual performs a trial use of the product.

5. Adoption: The individual decides to continue the trial and adopts
the product for full use.
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7.3.3 Modeling Diffusion of Innovations

To effectively make use of the theories regarding the diffusion of innova-
tions, we demonstrate a mathematical model for it in this section. The
model incorporates basic elements discussed so far and can be used to
effectively model a diffusion of innovations process. It can be concretely
described as

dA(t)
dt

= i(t)[P − A(t)]. (7.15)

Here, A(t) denotes the total population that adopted the innovation
until time t. i(t) denotes the coefficient of diffusion, which describes the
innovativeness of the product being adopted, and P denotes the total num-
ber of potential adopters (until time t). This equation shows that the rate at
which the number of adopters changes throughout time depends on how
innovative is the product being adopted. The adoption rate only affects
the potential adopters who have not yet adopted the product. Since A(t)
is the total population of adopters until time t, it is a cumulative sum and
can be computed as follows:

A(t) =

∫ t

t0

a(t)dt, (7.16)

where a(t) defines the adopters at time t. Let A0 denote the number of
adopters at time t0. There are various methods of defining the diffusion
coefficient [185]. One way is to define i(t) as a linear combination of the
cumulative number of adopters at different times A(t),

i(t) = α + α0A0 + · · · + αtA(t) = α +

t∑
i=t0

αiA(i), (7.17)

where αi’s are the weights for each time step. Often a simplified version of
this linear combination is used. In particular, the following three models
for computing i(t) are considered in the literature:

i(t) = α, External-Influence Model (7.18)
i(t) = βA(t), Internal-Influence Model (7.19)
i(t) = α + βA(t), Mixed-Influence Model (7.20)

where α is the external-influence factor and β is the imitation factor. EquationExternal Influence
Factor
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7.18 describes i(t) in terms of α only and is independent of the current
number of adopters A(t); therefore, in this model, the adoption only de-
pends on the external influence. In the second model, i(t) depends on the
number of adopters at any time and is therefore dependent on the internal
factors of the diffusion process. β defines how much the current adopter
population is going to affect the adoption and is therefore denoted as the
imitation factor. The mixed-influence model is a model between the two Imitation

Factorthat uses a linear combination of both previous models.

External-Influence Model

In the external-influence model, the adoption coefficient only depends on
an external factor. One such example of external influence in social media is
when important news goes viral. Often, people who post or read the news
do not know each other; therefore, the importance of the news determines
whether it goes viral. The external-influence model can be formulated as

dA(t)
dt

= α[P − A(t)]. (7.21)

By solving Equation 7.21,

A(t) = P(1 − e−αt), (7.22)

when A(t = t0 = 0) = 0. The A(t) function is shown in Figure 7.7. The
number of adopters increases exponentially and then saturates near P.

Internal-Influence Model

In the internal-influence model, adoption depends on how many have
adopted the innovation in the current time step.4 In social media there is
internal influence when a group of friends join a site due to peer pressure.
Think of a group of individuals where the likelihood of joining a social
networking site increases as more group members join the site. The internal
influence model can be described as follows:

dA(t)
dt

= βA(t)[P − A(t)]. (7.23)
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Figure 7.7: External-Influence Model for P = 100 and α = 0.01.

Since the diffusion rate in this model depends on βA(t), it is called the pure Pure Imitation
Modelimitation model. The solution to this model is defined as

A(t) =
P

1 + P−A0
A0

e−βP(t−t0)
, (7.24)

where A(t = t0) = A0. The A(t) function is shown in Figure 7.8.

Mixed-Influence Model

As discussed, the mixed influence model is situated in between the internal-
and external-influence models. The mixed-influence model is defined as

dA(t)
dt

= (α + βA(t))[P − A(t)]. (7.25)

By solving the differential equation, we arrive at

A(t) =
P − α(P−A0)

α+βA0
e−(α+βP)(t−t0)

1 +
β(P−A0)
α+βA0

e−(α+βP)(t−t0)
, (7.26)

4The internal-influence model is similar to the SI model discussed later in the section
on epidemics. For the sake of completeness, we provide solutions to both. Readers are
encouraged to refer to that model in Section 7.4 for further insight.
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Figure 7.8: Internal-Influence Model for A0 = 30, β = 10−5, and P = 200.

where A(t = t0) = A0. The A(t) function for the mixed-influence model is
depicted in Figure 7.9.

We discussed three models in this section: internal, external, and mixed
influence. Depending on the model used to describe the diffusion of inno-
vations process, the respective equation for A(t) (Equations 7.22, 7.24, or
7.26) should be employed to model the system.

7.3.4 Intervention

Consider a faulty product being adopted. The product company is plan-
ning to stop or delay adoptions until the product is fixed and re-released.
This intervention can be performed by doing the following:

• Limiting the distribution of the product or the audience that can adopt the
product. In our mathematical model, this is equivalent to reducing
the population P that can potentially adopt the product.

• Reducing interest in the product being sold. For instance, the company
can inform adopters of the faulty status of the product. In our models,
this can be achieved by tampering α: setting α to a very small value
in Equation 7.22 results in a slow adoption rate.

239



Figure 7.9: Mixed-Influence Model for P = 200, β = 10−5, A0 = 30, and
α = 10−3.

• Reducing interactions within the population. Reduced interactions result
in less imitation of product adoptions and a general decrease in the
trend of adoptions. In our models, this can be achieved by setting β
to a small value.

7.4 Epidemics

In an epidemic, a disease spreads widely within a population. This process
consists of a pathogen (the disease being spread), a population of hosts
(humans, animals, and plants, among others), and a spreading mechanism
(breathing, drinking, sexual activity, etc.). Unlike information cascades
and herding, but similar to diffusion of innovations models, epidemic
models assume an implicit network and unknown connections among
individuals. This makes epidemic models more suitable when we are
interested in global patterns, such as trends and ratios of people getting
infected, and not in who infects whom.

In general, a complete understanding of the epidemic process requires
substantial knowledge of the biological process within each host and the im-

240



mune system process, as well as a comprehensive analysis of interactions
among individuals. Other factors such as social and cultural attributes also
play a role in how, when, and where epidemics happen. Large epidemics,
also known as pandemics, have spread through human populations and
include the Black Death in the 13th century (killing more than 50% of Eu-
rope’s population), the Great Plague of London (100,000 deaths), the small-
pox epidemic, in the 17th century (killing more than 90% of Massachusetts
Bay Native Americans) and recent pandemics such as HIV/AIDS, SARS,
H5N1 (Avian flu), and influenza. These pandemics motivated the intro-
duction of epidemic models in the early 20th century and the establishment
of the epidemiology field.

There are various ways of modeling epidemics. For instance, one can
look at how hosts contact each other and devise methods that describe
how epidemics happen in networks. These networks are called contact
networks. A contact network is a graph where nodes represent the hosts Contact Networks
and edges represent the interactions between these hosts. For instance, in
the case of the HIV/AIDS epidemic, edges represent sexual interactions,
and in the case of influenza, nodes that are connected represent hosts that
breathe the same air. Nodes that are close in a contact network are not
necessarily close in terms of real-world proximity. Real-world proximity
might be true for plants or animals, but diseases such as SARS or avian
flu travel between continents because of the traveling patterns of hosts.
This spreading pattern becomes clearer when the science of epidemics is
employed to understand the propagation of computer viruses in cell phone
networks or across the internet [229, 214].

Another way of looking at epidemic models is to avoid considering
network information and to analyze only the rates at which hosts get in-
fected, recover, and the like. This analysis is known as the fully mixed Fully Mixed

Techniquetechnique, assuming that each host has an equal chance of meeting other
hosts. Through these interactions, hosts have random probabilities of
getting infected. Though simplistic, the technique reveals several useful
methods of modeling epidemics that are often capable of describing var-
ious real-world outbreaks. In this section, we concentrate on the fully
mixed models that avoid the use of contact networks.5

Note that the models of information diffusion that we have already
discussed, such as the models in diffusion of innovations or information

5A generalization of these techniques over networks can be found in [126, 125, 212].
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cascades, are more or less related to epidemic models. However, what
makes epidemic models different is that, in the other models of informa-
tion diffusion, actors decide whether to adopt the innovation or take the
decision and the system is usually fully observable. In epidemics, how-
ever, the system has a high level of uncertainty, and individuals usually
do not decide whether to get infected or not. The models discussed in this
section assume that (1) no contact network information is available and
(2) the process by which hosts get infected is unknown. These models can
be applied to situations in social media where the decision process has a
certain uncertainty to it or is ambiguous to the analyst.

7.4.1 Definitions

Since there is no network, we assume that we have a population where the
disease is being spread. Let N define the size of this crowd. Any member
of the crowd can be in either one of three states:

1. Susceptible: When an individual is in the susceptible state, he or she
can potentially get infected by the disease. In reality, infections can
come from outside the population where the disease is being spread
(e.g., by genetic mutation, contact with an animal, etc.); however,
for simplicity, we make a closed-world assumption, where susceptibleClosed-world

Assumption individuals can only get infected by infected people in the population.
We denote the number of susceptibles at time t as S(t) and the fraction
of the population that is susceptible as s(t) = S(t)/N.

2. Infected: An infected individual has the chance of infecting suscep-
tible parties. Let I(t) denote the number of infected individuals at
time t, and let i(t) denote the fraction of individuals who are infected,
i(t) = I(t)/N.

3. Recovered (or Removed): These are individuals who have either
recovered from the disease and hence have complete or partial im-
munity against the infection or were killed by the infection. Let R(t)
denote the size of this set at time t and r(t) the fraction recovered,
r(t) = R(t)/N .

Clearly, N = S(t)+ I(t)+R(t) for all t. Since we are assuming that there is
some level of randomness associated with the values of S(t), I(t), and R(t),
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Figure 7.10: SI Model.

we try to deal with expected values and assume S, I, and R represent these
at time t.

7.4.2 SI Model

We start with the most basic model. In this model, the susceptible indi-
viduals get infected, and once infected, they will never get cured. Denote
β as the contact probability. In other words, the probability of a pair of
people meeting in any time step is β. So, if β = 1, everyone comes into
contact with everyone else, and if β = 0, no one meets another individual.
Assume that when an infected individual meets a susceptible individual
the disease is being spread with probability 1 (this can be generalized to
other values). Figure 7.10 demonstrates the SI model and the transition
between states that happens in this model for individuals. The value over
the arrow shows that each susceptible individual meets at least βI infected
individuals during the next time step.

Given this situation, infected individuals will meet βN people on aver-
age. We know from this set that only the fraction S/N will be susceptible
and that the rest are infected already. So, each infected individual will
infect βNS/N = βS others. Since I individuals are infected, βIS will be
infected in the next time step. This means that the number of suscepti-
ble individuals will be reduced by this factor as well. So, to get different
values of S and I at different times, we can solve the following differential
equations:

dS
dt

= −βIS, (7.27)

dI
dt

= βIS. (7.28)

Since S + I = N at all times, we can eliminate one equation by replacing
S with N − I:

dI
dt

= βI(N − I). (7.29)

243



The solution to this differential equation is called the logistic growth
function,

I(t) =
NI0eβt

N + I0(eβt − 1)
, (7.30)

where I0 is the number of individuals infected at time 0. In general, analyz-
ing epidemics in terms of the number of infected individuals has nominal
generalization power. To address this limitation, we can consider infected
fractions. We therefore substitute i0 = I0

N in the previous equation,

i(t) =
i0eβt

1 + i0(eβt − 1)
. (7.31)

Note that in the limit, the SI model infects all the susceptible population
because there is no recovery in the model. Figure 7.11(a) depicts the
logistic growth function (infected individuals) and susceptible individuals
for N = 100, I0 = 1, and β = 0.003. Figure 7.11(b) depicts the infected
population for HIV/AIDS for the past 20 years. As observed, the infected
population can be approximated well with the logistic growth function
and follows the SI model. Note that in the HIV/AIDS graph, not everyone
is getting infected. This is because not everyone in the United States is in
the susceptible population, so not everyone will get infected in the end.
Moreover, there are other factors that are far more complex than the details
of the SI model that determine how people get infected with HIV/AIDS.

Figure 7.11: SI model simulation compared to the HIV/AIDS growth in the
United States.
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Figure 7.12: SIR Model.

7.4.3 SIR Model

The SIR model, first introduced by Kermack, and McKendrick [148], adds
more detail to the standard SI model. In the SIR model, in addition to the
I and S states, a recovery state R is present. Figure 7.12 depicts the model.
In the SIR model, hosts get infected, remain infected for a while, and then
recover. Once hosts recover (or are removed), they can no longer get
infected and are no longer susceptible. The process by which susceptible
individuals get infected is similar to the SI model, where a parameter
β defines the probability of contacting others. Similarly, a parameter γ
in the SIR model defines how infected people recover, or the recovering
probability of an infected individual in a time period ∆t.

In terms of differential equations, the SIR model is

dS
dt

= −βIS, (7.32)

dI
dt

= βIS − γI, (7.33)

dR
dt

= γI. (7.34)

Equation 7.32 is identical to that of the SI model (Equation 7.27). Equa-
tion 7.33 is different from Equation 7.28 of the SI model by the addition
of the term γI, which defines the number of infected individuals who re-
covered. These are removed from the infected set and are added to the
recovered ones in Equation 7.34. Dividing Equation 7.32 by Equation 7.34,
we get

dS
dR

= −
β

γ
S, (7.35)

and by assuming the number of recovered at time 0 is zero (R0 = 0),

log
S0

S
=
β

γ
R. (7.36)
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S0 = Se
β
γR (7.37)

S = S0e−
β
γR (7.38)

Since I + S + R = N, we replace I in Equation 7.34,

dR
dt

= γ(N − S − R). (7.39)

Now combining Equations 7.38 and 7.39,

dR
dt

= γ(N − S0e−
β
γR
− R). (7.40)

If we solve this equation for R, then we can determine S from 7.38 and
I from I = N − R − S. The solution for R can be computed by solving the
following integration:

t =
1
γ

∫ R

0

dx

N − S0e−
β
γx
− x

. (7.41)

However, there is no closed-form solution to this integration, and only
numerical approximation is possible. Figure 7.13 depicts the behavior of
the SIR model for a set of initial parameters.

The two models in the next two subsections are generalized versions
of the two models discussed thus far: SI and SIR. These models allow
individuals to have temporary immunity and to get reinfected.

7.4.4 SIS Model

The SIS model is the same as the SI model, with the addition of infected
nodes recovering and becoming susceptible again (see Figure 7.14). The
differential equations describing the model are

dS
dt

= γI − βIS, (7.42)

dI
dt

= βIS − γI. (7.43)

By replacing S with N − I in Equation 7.43, we arrive at

dI
dt

= βI(N − I) − γI = I(βN − γ) − βI2. (7.44)
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Figure 7.13: SIR Model Simulated with S0 = 99, I0 = 1, R0 = 0, β = 0.01,
and γ = 0.1.

When βN ≤ γ, the first term will be negative or zero at most; hence,
the whole term becomes negative. Therefore, in the limit, the value I(t)
will decrease exponentially to zero. However, when βN > γ, we will have
a logistic growth function as in the SI model. Having said this, as the
simulation of the SIS model shows in Figure 7.15, the model will never
infect everyone. It will reach a steady state, where both susceptibles and
infecteds reach an equilibrium (see the epidemics exercises).

Figure 7.14: SIS Model.
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Figure 7.15: SIS Model Simulated with S0 = 99, I0 = 1, β = 0.01, and γ = 0.1.

7.4.5 SIRS Model

The final model analyzed in this section is the SIRS model. Just as the
SIS model extends the SI, the SIRS model extends the SIR, as shown in
Figure 7.16. In this model, the assumption is that individuals who have
recovered will lose immunity after a certain period of time and will become
susceptible again. A new parameter has been added to the model λ that
defines the probability of losing immunity for a recovered individual. The

Figure 7.16: SIRS Model.
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set of differential equations that describe this model is

dS
dt

= λR − βIS, (7.45)

dI
dt

= βIS − γI, (7.46)

dR
dt

= γI − λR. (7.47)

Like the SIR model, this model has no closed-form solution, so numer-
ical integration can be used. Figure 7.17 demonstrates a simulation of the
SIRS model with given parameters of choice. As observed, the simulation
outcome is similar to the SIR model simulation (see Figure 7.13). The major
difference is that in the SIRS, the number of susceptible and recovered in-
dividuals changes non-monotonically over time. For example, in SIRS, the
number of susceptible individuals decreases over time, but after reaching
the minimum count, starts increasing again. On the contrary, in the SIR,
both susceptible individuals and recovered individuals change monotoni-
cally, with the number of susceptible individuals decreasing over time and
that of recovered individuals increasing over time. In both SIR and SIRS,
the infected population changes non-monotonically.

7.4.6 Intervention

A pressing question in any pandemic or epidemic outbreak is how to stop
the process. In this section, we discuss epidemic intervention based on
a recent discovery [55]. In any epidemic outbreak, infected individuals
infect susceptible individuals. Although in this chapter we discussed ran-
dom infection in the real world, what actually takes place is quite different.
Infected individuals have a limited number of contacts and can only infect
them if said contacts are susceptible. A well-connected infected individual
is more dangerous to the epidemic outbreak than someone who has no
contacts. In other words, the epidemic takes place in a network. Unfor-
tunately, it is often difficult to trace these contacts and outline the contact
network. If this was possible, the best way to intervene with the epidemic
outbreak would be to vaccinate the highly connected nodes and stop the
epidemic. This would result in what is known as herd immunity and would
stop the epidemic outbreak. Herd immunity entails vaccinating a pop-
ulation inside a herd such that the pathogen cannot initiate an outbreak
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Figure 7.17: SIRS Model Simulated with S0 = 99, I0 = 1, R0 = 0, γ = 0.1,
β = 0.01, and λ = 0.02.

inside the herd. In general, creating herd immunity requires at least a
random sample of 96% of the population to be vaccinated. Interestingly,
we can achieve the same herd immunity by making use of friends in a net-
work. In general, people know which of their friends have more friends.
So, they know or have access to these higher-degree and more-connected
nodes. Researchers found that if a random population of 30% of the herd
is selected and then these 30% are asked for their highest degree friends,
one can achieve herd immunity by vaccinating these friends. Of course,
older intervention techniques such as separating those infected from those
susceptible (quarantining them) or removing those infected (killing cows
with mad cow disease) still work.
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7.5 Summary

In this chapter, we discussed the concept of information diffusion in social
networks. In the herd behavior, individuals observe the behaviors of
others and act similarly to them based on their own benefit. We reviewed
the well-known diners example and urn experiment and demonstrated
how conditional probabilities can be used to determine why herding takes
place. We discussed how herding experiments should be designed and
ways to intervene with it.

Next, we discussed the information cascade problem with the constraint
of sequential decision making. The independent cascade model (ICM) is
a sender-centric model and has a level of stochasticity associated with it.
The spread of cascades can be maximized in a network given a budget
on how many initial nodes can be activated. Unfortunately, the problem
is NP-hard; therefore, we introduced a greedy approximation algorithm
that has guaranteed performance due to the submodularity of ICM’s acti-
vation function. Finally, we discussed how to intervene with information
cascades.

Our next topic was the diffusion of innovations. We discussed the char-
acteristics of adoption both from the individual and innovation point of
view. We reviewed well-known theories such as the models introduced by
Ryan and Gross, Katz, and Rogers, in addition to experiments in the field,
and different types of adopters. We also detailed mathematical models that
account for internal, external, and mixed influences and their intervention
procedures.

Finally, we moved on to epidemics, an area where decision making is
usually performed unconsciously. We discussed four epidemic models:
SI, SIR, SIS, and SIRS; the two last models allow for reinfected individuals.
For each model we provided differential equations, numerical solutions,
and closed-form solutions, when available. We concluded the chapter
with intervention approaches to epidemic outbreaks and a review of herd
immunity in epidemics. Although a 96% random vaccination is required
for achieving herd immunity, it is also possible to achieve it by selecting
a random population of 30% and then vaccinating their highest degree
friends.
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7.6 Bibliographic Notes

The concept of the herd has been well studied in psychology by Freud
(crowd psychology), Carl Gustav Jung (the collective unconscious), and
Gustave Le Bon (the popular mind). It has also been observed in economics
by Veblen [288] and in studies related to the bandwagon effect [240, 259, 165].
The behavior is also discussed in terms of sociability [258] in sociology.

Herding, first coined by Banerjee [23], at times refers to a slightly differ-
ent concept. In herd behaviour discussed in this chapter, the crowd does
not necessarily start with the same decision, but will eventually reach one,
whereas in herding the same behavior is usually observed. Moreover, in
herd behavior, individuals decide whether the action they are taking has
some benefits to themselves or is rational, and based on that, they will
align with the population. In herding, some level of uncertainty is associ-
ated with the decision, and the individual does not know why he or she is
following the crowd.

Another confusion is that the terms “herd behavior/herding” is often
used interchangebly with “information cascades” [37, 299]. To avoid this
problem, we clearly define both in the chapter and assume that in herd
behavior, decisions are taken based on global information, whereas in
information cascades, local information is utilized.

Herd behavior has been studied in the context of financial markets
[60, 74, 38, 69] and investment [250]. Gale analyzes the robustness of
different herd models in terms of different constraints and externalities [93],
and Shiller discusses the relation between information, conversation, and
herd behavior [256]. Another well-known social conformity experiment
was conducted in Manhattan by Milgram et al. [195].

Other recent applications of threshold models can be found in [307,
295, 296, 285, 286, 252, 232, 202, 184, 183, 108, 34]. Bikhchandani et al.
[1998] review conformity, fads, and information cascades and describe
how observing past human decisions can help explain human behavior.
Hirshleifer [128] provides information cascade examples in many fields,
including zoology and finance.

In terms of diffusion models, Robertson [238] describes the process and
Hagerstrand et al. [118] introduce a model based on the spatial stages
of the diffusion of innovations and Monte Carlo simulation models for
diffusion of innovations. Bass [30] discusses a model based on differential
equations. Mahajan and Peterson [187] extend the Bass model.
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Instances of external-influence models can be found in [119, 59] and
internal-influence models are applied in [188, 111, 110]. The Gompertz
function [189], widely used in forecasting, has a direct relationship with
the internal-influence diffusion curve. Mixed-influence model examples
include the work of Mahajan and Muller [186] and Bass model [30].

Midgley and Dowling [193] introduce the contingency model. Abraham-
son and Rosenkopf [3] mathematically analyze the bandwagon effect and
diffusion of innovations. Their model predicts whether the bandwagon
effect will occur and how many organizations will adopt the innovation.
Network models of diffusion and thresholds for diffusion of innovations
models are discussed by Valente [286, 287]. Diffusion through blogspace
and in general, social networks, has been analyzed by [112, 169, 306, 310].

For information on different pandemics, refer to [220, 31, 230, 68, 77, 53,
113, 206]. To review some early and in-depth analysis of epidemic models,
refer to [21, 13]. Surveys of epidemics can be found in [124, 125, 126, 72].
Epidemics in networks have been discussed [212, 201, 144] extensively.
Other general sources include [171, 78, 212]; [28]. A generalized model
for contagion is provided by Dodds and Watts [73] and, in the case of best
response dynamics, in [202].

Other topics related to this chapter include wisdom of crowd models
[104] and swarm intelligence [79, 82, 42, 147]. One can also analyze informa-
tion provenance, which aims to identify the sources from which information
has diffused. Barbier at al. [25] provide an overview of information prove-
nance in social media in their book.
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7.7 Exercises

1. Discuss how different information diffusion modeling techniques dif-
fer. Name applications on social media that can make use of methods
in each area.

Herd Effect

2. What are the minimum requirements for a herd behavior experiment?
Design an experiment of your own.

Diffusion of Innovation

3. Simulate internal-, external-, and mixed-influence models in a pro-
gram. How are the saturation levels different for each model?

4. Provide a simple example of diffusion of innovations and suggest a
specific way of intervention to expedite the diffusion.

Information Cascades

5. Briefly describe the independent cascade model (ICM).

6. What is the objective of cascade maximization? What are the usual
constraints?

7. Follow the ICM procedure until it converges for the following graph.
Assume that node i activates node j when i − j ≡ 1 (mod 3) and node
5 is activated at time 0.
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Epidemics

8. Discuss the mathematical relationship between the SIR and the SIS
models.

9. Based on our assumptions in the SIR model, the probability that an
individual remains infected follows a standard exponential distribu-
tion. Describe why this happens.

10. In the SIR model, what is the most likely time to recover based on the
value of γ?

11. In the SIRS model, compute the length of time that an infected indi-
vidual is likely to remain infected before he or she recovers.

12. After the model saturates, how many are infected in the SIS model?
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