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Strong ties connect individuals in the same 
community; weak ties connect individuals in 
different communities. 
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social networks, or OSNs, tend to frag-
ment into communities. We thus sug-
gest classifying as weak ties those 
edges linking individuals belonging 
to different communities and strong 
ties as those connecting users in the 
same community. We tested this defi-
nition on a large network representing 
part of the Facebook social graph and 
studied how weak and strong ties affect 
the information-diffusion process. Our 
findings suggest individuals in OSNs 
self-organize to create well-connected 
communities, while weak ties yield co-
hesion and optimize the coverage of 
information spread. 

Analysis and understanding of 
OSNs like Facebook takes a theoretical 
foundation in social network analysis 
from Kleinberg.15 However, studying a 
real OSN poses computer science chal-
lenges, given the size, distribution, and 
organization (such as privacy and vis-
ibility rules) of data available to regular 
OSN subscribers.1

In this context, analysis of large sub-
sets of OSNs should generate a series 
of statistically robust measurements 
that are the basis of understanding 
OSN structure and evolution. Indeed, 
aggregate measures are very valuable 
in data management, privacy manage-
ment, and online marketing. A chal-
lenging problem is how to evaluate the 
intensity of relations that bind users 
and determine how they facilitate the 
spread of information. These aspects 
of user connectedness and social com-
munication have been studied in so-
cial sciences before, notably through 
Granovetter’s theory.13 

P ER VASIVE SOCIO-TECHNICAL NETWORK S  bring new  
conceptual and technological challenges to developers 
and users alike. A central research theme is evaluation 
of the intensity of relations linking users and how 
they facilitate communication and the spread of 
information. These aspects of human relationships 
have been studied extensively in the social sciences 
under the framework of the “strength of weak ties” 
theory proposed by Mark Granovetter.13 Some research 
has considered whether that theory can be extended 
to online social networks like Facebook, suggesting 
interaction data can be used to predict the strength 
of ties. The approaches being used require handling 
user-generated data that is often not publicly available 
due to privacy concerns. 

Here, we propose an alternative definition of weak 
and strong ties that requires knowledge of only the 
topology of the social network (such as who is a friend 
of whom on Facebook), relying on the fact that online 

 key insights
 ˽ Online social networks can facilitate the 

growth of a friendship network consisting 
of distant communities; severing 
weak ties has a strong effect on the 
connectivity of the overall network. 

 ˽ We redefine the strong-versus-weak 
ties relationship to reflect the structure 
and evolution of massive online social 
networks, including Facebook. 

 ˽ Interesting properties emerge when users 
self-organize into communities within 
online social networks. 

http://dx.doi.org/10.1145/2629438
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ficult to separate and characterize 
through analysis of online data. And 
second, as Facebook grows in size and 
complexity, its friendship network 
grows denser, not sparser.1 

As OSNs become increasingly inter-
connected, testing Granovetter’s theory 
poses scalability challenges. Early re-
search, as in Gilbert and Karahalios,9 
took a supervised approach, where a 
panel of Facebook users was asked 
to assess the strength of their own 

Weak ties are connections between 
individuals belonging to distant areas 
of the social graph, or the ones that 
happen to have most of their relation-
ships in different national, linguistic, 
age, or common-experience groups. 
Weak ties are a powerful way to trans-
fer information across large social 
distances and to wide segments of the 
population. Strong ties are contacts be-
tween trusted/known persons (such as 
family ties and close friendships). 

Are Granovetter’s weak ties also 
found in OSNs like Facebook in the 
form he envisioned, or connections 
between individuals belonging to dif-
ferent areas of the social graph? An-
swering is difficult for at least two rea-
sons: Facebook is organized mainly 
around the recording of just one type 
of relationship—friendship—imply-
ing Facebook friendship captures 
(and compresses) several degrees and 
nuances of human relationships dif-
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We suggest 
classifying as weak 
ties those edges 
linking individuals 
belonging 
to different 
communities and 
strong ties as 
those connecting 
users in the same 
community. 

tie is a (probably linear) combination 
of the amount of time, the emotional 
intensity, the intimacy (mutual con-
fiding), and the reciprocal services 
that characterize the tie.” It intro-
duces important features of social 
ties like intensity of connection, or 
frequency of contacts, and reciproci-
ty. Granovetter considered identifica-
tion of strong and weak ties through 
topological information related to 
the social network structure. He thus 
introduced the concept of “bridge”: 
“A bridge is a line in a network which 
provides the only path between two 
points. Since, in general, each person 
has a great many contacts, a bridge 
between A and B provides the only 
route along which information or 
influence can flow from any contact 
of A to any contact of B.” Note, all 
bridges are weak ties. Unfortunately, 
with OSNs, the definition of bridge 
is restrictive and unsuitable. The 
well-known “small world effect,” or 
presence of short paths connecting 
a pair of vertices, and the “scale-free 
degree distribution,” or presence of 
“hubs” maintaining the whole net-
work, make it unlikely that an edge 
could be found whose deletion would 
completely disconnect its terminal 
vertices. 

To adapt Granovetter’s definition 
to OSNs, we could redefine a “shortcut 
bridge” as a link connecting a pair of 
vertices whose deletion would cause 
an increase in the distance (defined as 
the length of the shortest path linking 
two vertices) between them. Howev-
er, this otherwise sensible definition 
is more controversial than it might 
seem. First, it depends on the notion 
of shortest path, but, unfortunately, 
identification of all-pairs shortest 
paths is computationally unfeasible, 
even on networks of modest size. Sec-
ond, even the alternative definition of 
distance, or “weighted path” (comput-
ed as the sum of the weights assigned 
to each connection being used), would 
remain computationally prohibitive 
for OSNs. Our goal here is to explore 
a novel and computationally feasi-
ble definition of weak ties that suits 
analysis of large-scale OSNs. Instead 
of a relational definition based on the 
intensity of the interactions between 
two users, we propose a community-
based definition. We define weak ties 

friendship ties. Large-scale studies of 
Granovetter’s theory, as in Gilbert and 
Karahalios,9 would arguably be difficult 
to conduct, given the size of today’s 
OSNs. Other approaches, notably Bak-
shy et al.,2 access Facebook data on user 
activities and compute tie strength as a 
function of type and frequency of user 
interactions. However, a cutoff thresh-
old is required to distinguish strong 
ties from weak ties, and the tuning of 
that threshold has a crucial effect on 
identification of weak ties. 

Here, we propose a new definition 
of weak ties rooted in analysis of large 
OSNs and in light of related compu-
tational challenges. We first identify 
communities within the network, then 
classify as weak ties those edges that 
connect users located in different com-
munities; strong ties are those edges 
between users in the same community. 
Identifying weak ties through our defi-
nition is quick due to the efficiency of 
recent algorithms for finding commu-
nities in large networks8 and robust be-
cause no threshold has to be defined. 
We performed extensive experimental 
analysis on a public dataset on Face-
book friendship collected and released 
by Gjoka et al.10 and a null-model com-
parison against randomly generated 
graphs. We deployed two well-known 
community-detection algorithms: the 
Louvain Method (LM)3 and Infomap.20 

Our analysis of the experimental re-
sults produced the following insights: 

Independent of algorithm. The weak 
ties discovered through LM tend to co-
incide with those found through Info-
map; our definition of weak ties is thus 
largely independent of the choice of 
community-detection algorithm; 

Weak outnumber strong. Our com-
munity-defined weak ties outnumber 
strong ties; 

More frequent. Weak ties occur more 
frequently in communities of small 
size; and 

Spread of information. Weak ties 
identified through our approach play 
a crucial role in spreading informa-
tion over a network, and their removal 
reduces the portion of the network 
that can be reached through informa-
tion diffusion. 

Weak and Strong Ties 
Mark Granovetter introduced his now-
classic definition:13 “The strength of a 
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as those edges that, after dividing up 
the network into communities (thus 
obtaining so-called “community 
structure”), connect vertices belong-
ing to different communities. Finally, 
we classify intra-community edges as 
strong ties. 

One of the most important features 
of our weak ties is that those that are 
bridges (in the Granovetter sense) cre-
ate more, and shorter, paths; their de-
letion would indeed be more disrup-
tive than the removal of a strong tie, 
from a community-structure perspec-
tive. This may even be the reason weak 
ties (albeit defined in a slightly differ-
ent fashion) have proved effective in 
the diffusion of information.5,21 

Benefits of our definition. Our defi-
nition of weak tie has four appealing 
features: 

Weaker than Granovetter. The fact 
that vertices linked by a weak tie be-
long to different communities does 
not imply the edge between them is a 
bridge; its deletion may not disconnect 
its vertices, and, in practice, almost 
never does; 

Based on topological information. 
It enables weak/strong classification 
on the basis of only topological infor-
mation. Zhao et al.21 used topological 
information but only locally, on the 
neighbors of the two terminal vertices, 
whereas our definition handles global 
information, as it relies on the parti-
tioning of the whole network; 

Binary. It labels each edge in the 
network as either weak or strong; as a 
consequence, there is no need to need 
to “tune” any threshold, below which 
edges are classified as weak, the upshot 
being we cannot compare two edges on 
the basis of their strength; and 

Accuracy of community discovery. 
Our experiments show our definition 
of weak tie is robust with respect to 
the choice of a particular community-
detection algorithm.8 

Related Approaches 
Several research projects have ex-
amined the strength of weak ties in 
terms of nontopological information. 
A nontopological approach to deter-
mining degrees of strength or weak-
ness requires researchers to choose 
some measurable variables by which 
the strength of the relation binding 
two users can be deduced. In such a 

scenario, weak ties are intended in a 
relational sense; that is, they connect 
acquaintances who do not interact fre-
quently and therefore do not influence 
each another strongly. For “offline” 
social networks, Marsden and Camp-
bell17 identified some variables (such 
as communication reciprocity and the 
presence of at least one mutual friend) 
as indicators of a weak tie. 

In the context of the social Web, 
Gilbert and Karahalios9 and Petroczi 
et al.19 studied small OSNs—35 partic-
ipants and 56 participants, respective-
ly—assigning weights to the relation-
ships on the basis of several measures 
of strength (such as intimacy/close-
ness, reciprocity, and sociability/
conviviality) assessed through direct 
questions to participants. Gilbert 
and Karahalios9 extended Marsden-
Campbell’s method to Facebook by 
identifying as many as 74 variables as 
potential predictors of strength. They 
then modeled strength as a linear 
combination of the variables, com-
puting the weights by means of a vari-
ant of ordinary least-square regres-
sion. To validate their model, Gilbert 
and Karahalios9 recruited 35 users 
and asked them to rate their Face-
book friends. They achieved accuracy 
of approximately 85%, but their per-
formance is difficult to replicate on 
large OSN fragments. Their method 
requires collecting a large amount of 
information on user behavior; due to 
privacy concerns and the limitation 
on use of proprietary data, most such 
required data is unlikely to be avail-
able for academic studies. 

Zhao et al.21 formalized the 
strength of ties with a weight wij as-
signed to the edge connecting vertices  
i and j as follows 

where ki and kj are the degrees of i and j 
and cij are the numbers of their mutual 
acquaintances. Numerical simulations 
by Zhao et al.21 showed that by gradu-
ally deleting ties with lower w values, 
information coverage drops sharply. 

Zhao et al.’s results corroborate the 
hypothesis that weak ties are in fact the 
key to information diffusion. A 2012 
paper on weak ties in Facebook due 
to Bakshey et al.2 considered four pa-
rameters to measure the strength of a 

connection: frequency of private mes-
sages; frequency of public comments 
left on each other’s posts; number of 
times they jointly appear in a photo; 
and number of times they jointly com-
mented on a third-party post. 

Unlike us, Bakshy et al.2 did not 
consider, at least not explicitly, the to-
pological aspects of Facebook social 
connections; moreover, their analysis 
requires access to proprietary data 
and records of user activity, so the 
methodologies are not easily com-
pared. Our work is more like Blondel 
et al.2 and Zhao21 in that weak ties are 
understood to be useful connectors 
favoring the spread of information 
and was (as in Blondel et al.2) tested 
on Facebook. 

However, one difference emerges: 
Blondel et al. and Zhao et al. both as-
signed scores to ties and classified 
them according to a threshold value. 
In contrast, we classify ties as weak 
or strong, depending on whether or 
not they connect vertices located in 
different communities; our classifi-
cation scheme is binary and does not 
use scores and threshold, which may 
be difficult to set up and tune proper-
ly. Another approach is due to Grabo-
wicz et al.,12 who, like us, used infor-
mation about network topology to 
identify weak ties. However, they fo-
cused on Twitter, which can be mod-
eled as a directed network where user 
relationships are mostly asymmetric. 
The Twitter “retweet” and “mention” 
functions have a major effect on iden-
tification of weak ties; the studies are 
thus not easily compared. 

Results 
The results of the tests we carried out 
highlight the pros and cons of our defi-
nition of a weak tie. For the prelimi-
nary community-detection phase we 
deployed two popular algorithms: LM3 
and Infomap.20 We considered two 
testbeds, comparing them with a frag-
ment of the Facebook network collect-
ed by Gjoka et al.10 with 957,000 users 
and 58.4 million friendship connec-
tionsa and “null-model” networks con-
sisting of Erdös-Rényi random graphs 
with up to 2,048 vertices; we varied the 

a For a complete description of the dataset, see 
supplementary material at http://informatica.
unime.it/weak-ties/. 
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Figure 1. The complementary cumulative distribution function associated with (a) weak ties and (b) strong ties in our Facebook dataset. 
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Figure 2. The Ravg ratio for Erdös-Rényi random graphs clustered with (a) LM and (b) Infomap; instances with |V| = 128, 512, 1,024, and 4,096. 
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Figure 3. Coverage in graphs with different values of τ: (a) with Erdös-Rényi’s random graphs (|V| = 512, plink = 0.05, pinf = 0.01) when τ 
ranges from 0 to 0.9; (b) with the Facebook dataset generated with τ ranging from 0 to 0.9. Charts (a) and (b) report results for the LM. 
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Our findings 
suggest individuals 
in OSNs self-
organize to create 
well-connected 
communities, 
while weak ties 
yield cohesion 
and optimize 
the coverage of 
information spread. 

probability of having an edge between 
an arbitrary pair of vertices uniformly 
from 0.05 to 0.95, with a 0.05 step. 

Robustness of definition. As a pre-
liminary experiment, we studied the 
robustness of our definition of weak 
ties with respect to the method one 
might adopt for finding communi-
ties. Different community-detection 
methods might produce different re-
sults, albeit slightly, hence our weak/
strong ties classification could be-
come dependent on the community-
detection method. We ran both LM 
and Infomap on our Facebook sam-
ple, comparing the community struc-
tures found by the two algorithms by 
applying the normalized mutual in-
formation (NMI). We found an NMI of 
approximately 0.9, informing us that 
the level of disagreement between the 
two algorithms is quite low.b 

We conclude that on Facebook our 
definition of weak ties is robust be-
cause it does not depend on a specif-
ic community-detection algorithm. 
However, note that the communities 
discovered by LM and Infomap might 
differ in subtle ways yet still be char-
acterized by a high NMI. We next of-
fer a detailed, graphical comparison 
of the results we achieved by apply-
ing LM and Infomap to better un-
derstand the practical consequences 
of adopting a particular community-
detection algorithm. 

Strong and weak ties on Facebook. 
Here, we consider the distribution of 
weak and strong ties in Facebook. We 
computed the “complementary cumu-
lative distribution function,” or CCDF, 
of weak (as opposed to strong) ties, 
or the probability of finding a vertex 
with more than k weak (as opposed to 
strong) ties (see Figure 1). 

The CCDF associated with strong 
ties decreases quicker than that for 
weak ones. At k = 4, we see a tipping 
point after which weak ties quickly out-
number strong ties; that is, the latter 
are much less frequent than the former 
in higher-degree vertices. 

The results of our experiments 
agree fairly well with Granovetter’s “vi-

b The definition of NMI is included in the supple-
mentary material (see footnote a); if NMI, which 
ranges between 0 and 1, approaches 1, then the 
communities found by the two algorithms can 
be viewed as coinciding.

sion” of weak ties. Sociological theo-
ries (such as triadic closure,13 cognitive 
balance,14 and homophily18) suggest 
individuals tend to aggregate in small 
communities. 

We thus confirm that the intensity 
of human relations is very tight within 
small groups but decreases for indi-
viduals belonging to distant communi-
ties. Most connections are weak in the 
sense of Granovetter, with few contacts 
and infrequent interactions. 

Weak and strong ties in random 
graphs. Here, we offer a comparative 
analysis of weak/strong ties distribu-
tion in Erdös-Rényi random graphs; 
that is, we check whether the results 
we obtained on Facebook data still 
hold on graphs where the structure is 
known in advance and lacks, by con-
struction, a clear community structure. 
We computed the ratio Ravg of the num-
ber of weak ties to the total number of 
ties; Figure 2 outlines Ravg for different 
values of |V| and when the probability 
plink of having an edge between an arbi-
trary pair of vertices varies uniformly 
from 0.05 to 0.95. 

We thus derive several insights: 
Weak outnumber strong. Ravg is always 

greater than 0.6; that is, weak ties still 
outnumber strong ties, even in ran-
domly generated graphs; 

Stable and independent. Ravg is rela-
tively stable and independent of plink; 
that is, the “sparseness” of G has a lim-
ited effect on the number of weak ties; 
and 

Limited effect. |V| has a limited ef-
fect on Ravg; when |V| goes from 128 to 
4,096, or increases by a factor of 32, Ravg 
increases by only 17.14%. 

Weak ties in information diffusion. 
We also studied how weak ties influ-
ence the information-diffusion proc-
ess, clarifying the connection between 
our definition and Granovetter’s, since 
we view weak ties as providing specific 
links between individuals who would 
otherwise remain disconnected, as 
they belong to distant areas of the so-
cial graph. 

Granovetter’s weak ties should play 
a central role in the spread of informa-
tion. But how do our weak ties convey 
information? 

We applied the Independent Cas-
cade Model (ICM)11 to simulate infor-
mation propagation over a network, 
again taking the Facebook dataset 
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and Erdös-Rényi’s random graphs for 
comparison. In ICM, a vertex v0 is se-
lected uniformly at random to forward 
a message to its neighbors, with prob-
ability equal to pinf (infection probabil-
ity).

Each “infected” vertex can, in turn, 
recursively propagate the message to 
its neighbors. Leskovec et al.16 reported 
reasonable values of pinf are 0.01, 0.02, 
and 0.03. 

To generate statistically significant 
results, we selected the vertex v0 to 
start from 250 times; at each selection 
of v0, we simulated the propagation of 
a message, measuring the coverage σ 
defined as the ratio of the number of 
vertices receiving a message (infected 
vertices) to the total number of verti-
ces. We repeated the experiment by 
progressively (and randomly) deleting 
a fraction τ of weak ties. 

In our simulation, τ ranged from 
0.1 to 0.9, and, for each value, we com-
puted the corresponding coverage. 
The whole procedure was repeated 
separately for weak and strong ties. 
Figure 3 and in the supplementary 
material (http://informatica.unime.
it/weak-ties/) show the values of σ ob-
tained by applying the LM and Info-
map on Erdös-Rényi’s random graphs, 
respectively. Here, we consider a graph 
with |V| = 512 vertices, plink = 0.05 and 
plinf = 0.03. 

Note the gradual deletion of weak 
ties yields a decrease of σ; on average, 
the greatest decrease of σ is 11.98%, 
with an average decrease equal to 
5.71%, with standard deviation of 3.4%. 
We found the same behavior when re-
moving strong ties, but the decrease 
was less marked. We observed that if |V| 
increases, the coverage σ also increas-
es. The values of σ associated with our 
Facebook dataset are reported in Figure 
3b and in the supplementary material. 

Again, for a fixed value of τ, remov-
ing weak ties yields a decrease of σ  
more marked than the removal of 
strong ties. The greatest decrease 
of σ we observed was approximately 
14.31%, with an average decrease of 
6.26%, with standard deviation of 3.1%. 

These values are always greater 
than those for Erdös-Rényi’s random 
graphs, proving the removal of weak 
ties is more significant in real OSNs 
than in networks not equipped with a 
meaningful community structure. We 

thus conclude that our definition of 
weak ties captures Granovetter’s idea, 
in that deleting weak ties decreases/
obstructs the flow of information 
much more effectively than removing 
strong ties. 

Conclusion 
We have presented a novel definition of 
weak ties designed for OSNs like Face-
book based on the community struc-
ture of the network itself. The experi-
ments we conducted on a Facebook 
sample of 957,000 users and randomly 
generated graphs highlight the role 
and importance of weak ties. We char-
acterized the overall statistical distri-
bution of weak ties as a function of the 
size of a community and its density. We 
studied their role in information-diffu-
sion processes, with results suggesting 
a connection between our definition of 
weak ties for OSNs and Mark Granovet-
ter’s original definition. 

Even though several recent research 
projects have focused on Facebook’s 
social graph,1,4 community structure,7 
and weak ties per se,2 our community-
based definition of weak ties better 
fits Facebook and similarly large (and 
dense) OSNs. 

As for future work, we hope to fol-
low up with two more projects: The 
first concerns investigating the ap-
plicability of network-weighting strat-
egies, so the strength of ties can be 
computed according to a given ratio-
nale (such as the ability of each link 
to spread information); we intend to 
adopt a novel method of weighting 
edges suited for OSNs we devised in 
De Meo et al.6 The second concerns 
analysis of geographical data related 
to Facebook users; due to the merging 
of different graphs (such as social and 
geographical), we expect to gain addi-
tional insight into the role of physical 
vs. virtual distances. 
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