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Abstract

Microblogging and mobile devices appear to augment human social capabilities, which raises the question whether they
remove cognitive or biological constraints on human communication. In this paper we analyze a dataset of Twitter
conversations collected across six months involving 1.7 million individuals and test the theoretical cognitive limit on the
number of stable social relationships known as Dunbar’s number. We find that the data are in agreement with Dunbar’s
result; users can entertain a maximum of 100–200 stable relationships. Thus, the ‘economy of attention’ is limited in the
online world by cognitive and biological constraints as predicted by Dunbar’s theory. We propose a simple model for users’
behavior that includes finite priority queuing and time resources that reproduces the observed social behavior.
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Introduction

Recently, the divide between the physical world and online social

realities has been blurred by the new possibilities afforded by real-

time communication and broadcasting, which appear to greatly

enhance our social and cognitive capabilities in establishing and

maintaining social relations. The combination of mobile devices

with new tools like Twitter, Foursquare, Blippy, Tumblr, Yahoo!

Meme, Google Hotspot, etc., are defining a new era in which we

can be continuously connected with an ever-increasing number of

individuals through constant digital communication composed of

small messages and bits of information. Thus, while new data and

computational approaches to social science [1,2,3] finally enable us

to answer a large number of long-standing questions [4,5,6], we are

also increasingly confronted with new questions related to the way

social interaction and communication change in online social

environments: What is the impact that modern technology has on

social interaction? How do we manage the ever-increasing amount

of information that demands our attention?

In 1992, R. I. M. Dunbar [7] measured the correlation between

neocortical volume and typical social group size in a wide range of

primates and human communities. The result was as surprising as

it was far-reaching. The limit imposed by neocortical processing

capacity appears to define the number of individuals with whom it

is possible to maintain stable interpersonal relationships. There-

fore, the size of the brain’s neocortex represents a biological

constraint on social interaction that limits humans’ social network

size to between 100 and 200 individuals [8], i.e. Dunbar’s number.

McCarty et al. [9] independently attempted to measure typical

group size using two different methods and obtained a number of

291, roughly twice Dunbar’s estimate.

Biological constraints on social interaction go along with other

real-world physical limitations. After all, a person’s time is finite

and each person must make her own choices about how best to use

it given the priority of personal preferences, interests, needs, etc.

The idea that attention and time are scarce resources led H.

Simon [10] to apply standard economic tools to study these

constraints and introduce the concept of an Attention Economy

with mechanisms similar to our everyday monetary economy. The

increasingly fast pace of modern life and overwhelming availability

of information has brought a renewed interest in the study of the

economy of attention with important applications both in business

[11] and the study collective human behavior [12]. On one hand,

it can be argued that microblogging tools facilitate the way we

handle social interactions and that this results in an online world

where human social limits are finally lifted, making predictions

such as the Dunbar’s number obsolete. Microblogging and online

tools, on the other hand, might be analogous to a pocket calculator

that, while speeding up the way we can do simple math, does not

improve our cognitive capabilities for mathematics. In this case,

the basic cognitive limits to social interactions are not surpassed in

the digital world. In this paper we show that the latter hypothesis is

supported by the analysis of real world data that identify the

presence of Dunbar’s limit in Twitter, one of the most successful

online microblogging tools.

Materials and Methods

Here we analyze a massive dataset of Twitter conversations

accrued over the span of six months and investigate the possibility

of deviation from Dunbar’s number in the number of stable social

relations mediated by this tool. The pervasive nature of Twitter,
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along with its widespread adoption by all layers of society, makes it

an ideal proxy for the study of social interactions [13,14,15,16].

We have analyzed over 380 million tweets from which we were

able to extract 25 million conversations. Each Twitter conversa-

tion takes on the form of a tree of tweets, where each tweet comes

as a reply to another. By projecting this forest of trees onto the

users that author each tweet, we are able to generate a weighted

social network connecting over 1.7 million individuals (see

Figure 1).

In the generated network each node corresponds to a single

user. The out-degree of the nodes is the number of users the node

replies to, while the in-degree corresponds to the number of

different nodes it receives a reply from. When A follows B, A

subscribes to receive all the updates published by B. A is then one

of B’s followers and B is one of A’s friends. Previous studies have

mostly focused on the network induced by this follower-friend

relationship [15,17,18,19]. In any study about stable social

relations in online media, as indicated by studies about Dunbar’s

number, it is important to discount occasional social interactions.

For this reason we focus on stronger relationships [13] in our

study, considering just active communication from one user to

another by means of a genuine social interaction between them. In

our network [20,21] we introduce the weight wij of each edge,

defined as the number of times user i replies to user j as a direct

measurement of the interaction strength between two users and

stable relations will be those with a large weight. A simple way to

measure this effect is to calculate the average weight of each

interaction by a user as a function of his total number of

interactions. Users that have only recently joined Twitter will have

few friends and very few interactions with them. As time goes by,

stable users will acquire more and more friends, but the number of

replies that they send to other users will increase consistently only

in stable social interactions. Eventually, a point is reached where

the number of contacts surpasses the user’s ability to keep in

contact with them.

This saturation process will necessarily lead to some relation-

ships being more valued than others. Each individual tries to

optimize her resources by prioritizing these interactions. To

quantify the strength of these interactions, we studied the quantity

vi
out , defined as the average social strength of active initiate

relationship:

vout
i (T):

P

j

wij(T)

kout
i

This quantity corresponds to the average weight per outgoing edge

of each individual where T represents the time window for data

aggregation. We measure this quantity in our data set as shown in

Figure 2A. The data shows that this quantity reaches a maximum

between 100 and 200 friends, in agreement with Dunbar’s

prediction (see figure 2A). This finding suggests that even though

modern social networks help us to log all the people with whom we

meet and interact, they are unable to overcome the biological and

physical constraints that limit stable social relations. In Figure 2B,

we plot kout
i , the number of reciprocated connections, as a function

of the number of the in-degree. kout
i saturates between 200 and 300

even though the number of incoming connections continues to

increase. This saturation indicates that after this point the system is

in a new regime; new connections can be reciprocated, but at a

much smaller rate than before. This can be accounted for by

spurious exchanges we make with some contacts with whom we do

not maintain an active relationship.

If we assume that biological and time constraints are the key

ingredients in fixing Dunbar’s number, then it is interesting to

define a minimal agent model entailing those key features in the

form of a dynamical process. We consider a static network where

each agent (node) i is connected to its nearest neighbors j through

two directed edges. Whenever a message is sent from node i to

node j, the weight of the (i, j) edge, wij is increased by one. The total

activity of each user is given by the sum over all of its outgoing

edges and the out-degree is equal to the in-degree edge. In this way

we are able to distinguish between incoming and outgoing

messages. Indeed, in Twitter user relationships are directed and

not always reciprocal. One of Twitter’s features is to always show

replies, even from users we do not explicitly follow. In this way,

conversations can flow back and forth between users regardless of

whether or not they have an explicit mutual follower relationship.

Figure 1. Reply trees and user network. A) The set of all trees is a forest. Each time a user replies, the corresponding tweet is connected to
another one, resulting in a tree structure. B) Combining all the trees in the forest and projecting them onto the users results in a directed and
weighted network that can be used as a proxy for relationships between users. The number of outgoing (incoming) connections of a given user is
called the out (in) degree and is represented by kout (kin). The number of messages flowing along each edge is called the degree, w. The probability
density function P(kout) (P(kint)) indicates the probability that any given node has kout (kin) out (in) degree and it is called the out (in) degree
distribution and is a measure of node diversity on the network.
doi:10.1371/journal.pone.0022656.g001

Validation of Dunbar’s Number in Twitter
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Agents communicate with each other by replying to messages.

When agent i receives a message the message is placed in an

internal queue that allows up to qmax messages to be handled at

each time step. In the presence of finite resources each agent has to

make informed decisions about which are the most important

messages to answer. This is a direct consequence of the physical

constraints that we model by assuming messages are stored

according to a priority set proportional to the total degree of the

sender j. In this way, we implicitly assume that the degree is a

proxy for popular and socially active agents who are more likely to

be answered. A user’s queue provides a minimal and simplistic

representation of the finite cognitive and time capabilities that

each user has by imposing limits and prioritization to active

communications. At each time step, each agent goes through its

queue and performs the following simple operations:

- The agent replies to a random number St of messages between

0 and the number of messages qi present in the queue. The

messages to be replied to are selected proportionally to the

priority of the sending agent (its total degree). A message is

then sent to j, the node we are replying to, and the

corresponding weight wij is incremented by one.

- Messages the agent has replied to are deleted from the queue

and all incoming messages are added to the queue in a

prioritized order until the number of messages reaches qmax.

Messages in excess of qmax are discarded.

The dynamic process is then repeated for a total number of time

steps T. In order to initialize the process and take into account the

effect of endogenous random effects, each agent can broadcast a

message to all of its contacts with some small probability p. One

may think of this message as a common status change, or a TV

appearance, news story, or any other information not necessarily

authored by the sending agent. Since these messages are not

specifically directed from one user to another, they do not

contribute to the weight of the edges through which they flow. We

have studied this simple model by using an underlying network of

N = 105 nodes and different scale-free topologies. For each

simulation T = 26104 time steps have been considered and the

plots are made evaluating the medians among at least 1000 runs.

In Figure 3 we report the results of simulations in a directed

heavy-tailed network with a power-law tail similar to those

observed for the measured network (see Information S1). The

figures clearly show a behavior compatible with the empirical data.

The peak that maximizes the information output per connection is

linearly proportional to qmax, supporting the idea that the physical

constraints entailed in the queue’s maximum capacity along with

the prioritization that gives importance to popular senders are at

the origin of the observed behavior. We have also performed an

extensive sensitivity analysis on the broadcasting probability p, the

time scale T, and have investigated the effect of agent

heterogeneity by studying populations in where each agent’s

capacity qmax,i is randomly distributed according to a Gaussian

distribution centered around qmax with standard deviation s. In

Information S1 we present an extensive discussion concerning the

weak effects that variations in the broadcasting probability, p, the

time scale, T, and agent heterogeneity have on the obtained

results.

Results and Discussion

In order to provide insight into the mechanisms behind the

behavior we observe in the model, we consider the point of view of

a single user. A set of ki directed links is assigned to the user i. This

user can interact with ki/2 other users and their contacts, sending

messages to them through ki
out = ki/2 outgoing links or receiving

messages from them through ki
in = ki/2 incoming links. The

dynamics of our model are then applied for T time steps. The

Figure 2. Connection weight and Reciprocated connections. A) Out-weight as a function of the out-degree. The average weight of each
outward connection gradually increases until it reaches a maximum near 150–200 contacts, signaling that a maximum level of social activity has been
reached. Above this point, an increase in the number of contacts can no longer be sustained with the same amount of dedication to each. The red
line corresponds to the average out-weight, while the gray shaded area illustrates the 50% confidence interval. B) Number of reciprocated
connections, r, as a function of kin. As the number of people demanding our attention increases, it will eventually saturate our ability to reply leading
to the flat behavior displayed in the dashed region.
doi:10.1371/journal.pone.0022656.g002
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quantity vi
out(T) is evaluated for different values of ki (see Figure 4).

In this mean-field approach we ignore the dynamics of all users

connected to i. Instead, we use them as the source of messages that

focus our attention to the behavior of a single individual connected

to them. The average number of messages that i receives at each

time step is ,R.,ki
2. This is given by the fact that the number of

messages each user receives is proportional to the number of

connections times the probability that a connected individual

sends a message to the agent. The latter probability increases with

the popularity of the agent i and is proportional to its degree ki.

Two different regimes are therefore found to be a function of ki.

Given a small number of contacts ki, the number of messages

that the user i receives is small with respect to the queue size qmax.

At each time step i can in principle reply to all received messages.

The number of outgoing replies in this regime scales with the

number of received messages. For large enough T the user will be

able to reply to all the received messages ,R. and the average

number of replies for connections will scale as vout
i !

SRT
ki

!ki.

For a number of contacts larger than the queue size qmax, the user

will be unable to reply to all messages in the queue. Once the

saturation effect takes place, the user will on average reply to the

same number of messages at each time step. The average number

of replies per connection will therefore scale as vout
i !

qmax ,i

ki

.

These are indeed the two clear regimes observed in the empirical

data and in the model simulations. Furthermore, in Figure 4 we

consider the inclusion of Gaussian noise with varying standard

deviation s in the queue size qmax of agents. The plots show that

different noise levels do not affect the model’s behavior. Despite its

simplicity, this mean-field analysis clearly shows the key mecha-

nism and ingredients of our model: limitation of resources and

prioritization of tasks.

The simple model that we have introduced offers a basic

explanation of a seemingly complex phenomena observed in the

empirical patterns on Twitter data and offers support to Dunbar’s

hypothesis of a biological limit to the number of relationships than

can be simultaneously maintained by a single individual. The

social interaction mechanism we propose: limited attention and

internal prioritization of interactions, is sufficiently parsimonious

and robust to be applicable to a wide range of social scenarios.

Supporting Information

Information S1 Detailed description of the Twitter
data, sensitivity analysis of the parameter’s model and
analytical description of the single user model.
(PDF)

Author Contributions

Conceived and designed the experiments: BG NP AV. Performed the

experiments: NP. Analyzed the data: BG. Wrote the paper: BG NP AV.

Figure 3. Result of running our model on a heterogeneous network made of N = 105, nodes with degree distribution P kð Þ~k{c: with
c = -2.4 and s = 10. Different curves correspond to different queue size. The inset shows the linear dependence of the peak on the queue size q.
Each curve is the median of 1,000 to 2,000 runs of T = 26104 time steps. In the inset, we plot the position of the peak as a function of the queue size.
The linear relation is clear.
doi:10.1371/journal.pone.0022656.g003

Figure 4. Results for the single user and different values of s,
the inter-user queue size variance. We fixed the average queue
size at qmax,i = 50 and extracted the priorities of user neighbors from a
power-law statistical distribution with exponent c= 22.1. For each ki we
run T = 500 time steps and present the medians among 103 runs.
doi:10.1371/journal.pone.0022656.g004
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