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AN OPEN APPROACH TO
AUTONOMOUS VEHICLES

.................................................................................................................................................................................................................

AUTONOMOUS VEHICLES ARE AN EMERGING APPLICATION OF AUTOMOTIVE TECHNOLOGY,

BUT THEIR COMPONENTS ARE OFTEN PROPRIETARY. THIS ARTICLE INTRODUCES AN OPEN

PLATFORM USING COMMODITY VEHICLES AND SENSORS. THE AUTHORS PRESENT

ALGORITHMS, SOFTWARE LIBRARIES, AND DATASETS REQUIRED FOR SCENE RECOGNITION,

PATH PLANNING, AND VEHICLE CONTROL. RESEARCHERS AND DEVELOPERS CAN USE THE

COMMON INTERFACE TO STUDY THE BASIS OF AUTONOMOUS VEHICLES, DESIGN NEW

ALGORITHMS, AND TEST THEIR PERFORMANCE.

......Autonomous vehicles are becom-
ing a new piece of infrastructure. Automotive
makers, electronics makers, and IT service
providers are interested in this technology,
and academic research has contributed signif-
icantly to producing their prototype systems.
For example, one notable work was pub-
lished by Carnegie Mellon University.1

Despite this trend, autonomous vehicles
are not systematically organized. Given that
commercial vehicles protect their in-vehicle
system interface from users, third-party ven-
dors cannot easily test new components of
autonomous vehicles. In addition, sensors are
not identical. Some vehicles might use only
cameras, whereas others might use a combi-
nation of cameras, laser scanners, GPS
receivers, and milliwave radars.

In addition to hardware issues, autono-
mous vehicles must address software issues.
Because an autonomous-vehicles platform is
largescale, it is inefficient to build it up from
scratch, especially for prototypes. Open-
source software libraries are preferred for that
purpose, but they have not yet been inte-

grated to develop autonomous vehicles. The
design and implementation of algorithms for
scene recognition, path planning, and vehicle
control also require multidisciplinary skills
and knowledge, often incurring a significant
engineering effort. Finally, a basic dataset,
such as a map for localization, must be pro-
vided to drive on a public road.

Overall, autonomous vehicles are com-
posed of diverse technologies. Building their
platform requires a multidisciplinary collabo-
ration in research and development. To facili-
tate this collaboration, we introduce an open
platform for autonomous vehicles that many
researchers and developers can study to
obtain a baseline for autonomous vehicles,
design new algorithms, and test their per-
formance, using a common interface.

Vehicles and sensors
We introduce an autonomous-vehicles plat-
form with a set of sensors that can be purchased
in the market. We assume that intelligent mod-
ules of autonomous driving, such as scene rec-
ognition, path planning, and vehicle control,
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are located in a plug-in computer connected to
vehicular Controller Area Network (CAN) bus
networks. Given that commercial vehicles are
not designed to employ such a plug-in com-
puter, we need to add a secure control gateway
to the CAN bus networks. This is often a com-
plex undertaking that prevents researchers and
developers from using real-world vehicles.

The ZMP Robocar product provides a
vehicle platform containing a control gateway
through which a plug-in computer can send
operational commands (such as pedal strokes
and steering angles) to the vehicle. Figure 1
shows one of their product lines, the ZMP
Robocar “HV,” which is based on the Toyota
Prius. (Details about the product are available
at www.zmp.co.jp.) We added a plug-in com-
puter and a set of sensors, such as cameras and
light detection and ranging (Lidar) sensors, to
this basic platform so that the results of scene
recognition, path planning, and vehicle con-
trol could apply to autonomous driving.

The specification of sensors and com-
puters highly depends on the functional
requirements of autonomous driving. Our
prototype system uses various sensors and
computers (see Figure 1):

� Velodyne Lidar sensors produce 3D
point-cloud data, which can be used
for localization and mapping, while
also being used to measure the dis-
tance to surrounding objects.

� Ibeo Lidar sensors produce long-
range 3D point-cloud data, although
their vertical resolution is lower than
that of the Velodyne Lidar sensors.

� Hokuyo Lidar sensors produce short-
range 2D laser scan data and are use-
ful for emergent stopping rather than
for localization and mapping.

� Point Grey Ladybug 5 and Grasshop-
per 3 cameras can detect objects. The
Ladybug 5 camera is omnidirectional,
covering a 360-degree view, whereas
the Grasshopper 3 camera is single-
directional, operating at a high rate.
The former can be used to detect mov-
ing objects, and the latter can be used
to recognize traffic lights.

� Javad RTK sensors receive global posi-
tioning information from satellites.
They are often coupled with gyro sen-
sors and odometers to fix the position-
ing information.

Velodyne HDL-64e (3D Lidar)

ZMP Robocar HV

Point Grey Ladybug 5 (camera)

Workstation computer

Javad RTK-GNSS (GPS)

Laptop computer

Point Grey Grasshopper 3 (camera)

Ibeo LUX 8L (3D Lidar)

Hokuyo UTM-30LX (Lidar)

Velodyne HDL-32e (3D Lidar)

Figure 1. ZMP Robocar “HV” and examples of sensors and plug-in computers. Omni view cameras, Lidar sensors and GNSS

receivers are equipped outside of the vehicle, while single-view cameras and computers are set inside.
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These sensors can be connected to com-
modity network interfaces, such as Ethernet
and USB 3.0. Note that sensors for autono-
mous vehicles are not limited to them. For
example, milliwave radars and inertial meas-
urement units are often preferred for autono-
mous vehicles.

Regarding a plug-in computer, because
commercial vehicles support only a DC 12-V
power supply, we add an inverter and battery
to provide an AC 100-V power supply for
the prototype vehicle in Figure 1. Note that
the choice of a plug-in computer depends on
performance requirements for autonomous
vehicles. In our project, we started with a
high-performance workstation to test algo-
rithms. Once the algorithms were developed,
we switched it to a mobile laptop to downsize
the system. Now, we are aiming to use an
embedded system on a chip (SoC), taking
into account the production image.

Algorithms
We can roughly classify autonomous-driving
components into scene recognition, path
planning, and vehicle control. Each class com-

prises a set of algorithms. For instance, scene
recognition requires localization, object-detec-
tion, and object-tracking algorithms. Path
planning often falls into mission and motion
planning, whereas vehicle control corresponds
to path following.

Figure 2 shows the algorithms’ basic con-
trol and data flow. Here, we introduce exam-
ples of the algorithms used in our auto-
nomous-vehicles platform.

Localization
Localization is one of the most basic and
important problems in autonomous driving.
Particularly in urban areas, localization preci-
sion dominates the reliability of autonomous
driving. We use the Normal Distributions
Transform (NDT) algorithm to solve this
localization problem.2 To be precise, we use
the 3D version of NDT to perform scan
matching over 3D point-cloud data and 3D
map data.3 As a result, localization can per-
form at the order of centimeters, leveraging a
high-quality 3D Lidar sensor and a high-pre-
cision 3D map. We chose the NDT algo-
rithms because they can be used in 3D forms

Point cloud data 3D map data Image data

Object detectionLocalization

Current position

Mission planning

Global waypoint

Motion planning

Local waypoint

Path following

Velocity and angle

Object positions

in real world

Current

position

Reprojection

Object positions on image

Object tracking

Object positions image

Figure 2. Basic control and dataflow of algorithms. The output velocity and angle are sent as

commands to the vehicle controller.
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and their computation cost does not suffer
from map size (the number of points).

Localization is also a key technique to
build a 3D map. Because 3D Lidar sensors
produce 3D point-cloud data in real time, if
our autonomous vehicle is localized correctly,
a 3D map is created and updated by register-
ing the 3D point-cloud data at every scan.
This is often referred to as simultaneous
localization and mapping.

Object detection
Once we localize our autonomous vehicle,
we next detect objects, such as vehicles,
pedestrians, and traffic signals, to avoid acci-
dents and violation of traffic rules. We focus
on moving objects (vehicles and pedestrians),
although our platform can also recognize
traffic signals and lights. We use the Deform-
able Part Models (DPM) algorithm to detect
vehicles and pedestrians.4 DPM searches and
scores the Histogram of Oriented Gradients
features of target objects on the image cap-
tured from a camera.5 We chose these algo-
rithms because they scored the best numbers
in past Pattern Analysis, Statistical Modeling,
and Computational Learning (Pascal) Visual
Object Classes challenges.

Apart from image processing, we also use
point-cloud data scanned from a 3D Lidar
sensor to detect objects by Euclidean cluster-
ing. Point-cloud clustering aims to obtain the
distance to objects rather than to classify
them. The distance information can be used
to range and track the objects classified by
image processing. This combined approach
with multiple sensors is often referred to as
sensor fusion.

Operating under the assumption that our
autonomous vehicle drives on a public road,
we can improve the detection rate using a 3D
map and the current position information.
Projecting the 3D map onto the image origi-
nated on the current position, we know the
exact road area on the image. We can there-
fore constrain the region of interest for image
processing to this road area so that we can
save execution time and reduce false positives.

Object tracking
Because we perform the object-detection
algorithm on each frame of the image and
point-cloud data, we must associate its results

with other frames on a time basis so that we
can predict the trajectories of moving objects
for mission and motion planning. We use
two algorithms to solve this tracking prob-
lem. Kalman Filters is used under a linear
assumption that our autonomous vehicle is
driving at constant velocity while tracking
moving objects.6 Its computational cost is
lightweight and suited for real-time process-
ing. Particle Filters, on the other hand, can
work for nonlinear tracking scenarios, in
which both our autonomous vehicle and
tracked vehicles are moving.7

In our platform, we use both Kalman Fil-
ters and Particle Filters, depending on the
given scenario. We also apply them for track-
ing on both the 2D (image) plane and the
3D (point-cloud) plane.

Projection and reprojection
We augment scene recognition supported by
our platform with sensor fusion of a camera
and a 3D Lidar sensor. To calculate the
extrinsic parameters required to make this
sensor fusion, we calibrate the camera and
the 3D Lidar sensor. We can then project the
3D point-cloud information obtained by the
3D Lidar sensor onto the image captured by
the camera so that we can add depth infor-
mation to the image and filter out the region
of interest of object detection.

The result of object detection on the
image can also be reprojected onto the 3D
point-cloud coordinates using the same
extrinsic parameters. We use the reprojected
object positions to determine the motion
plan and, in part, the mission plan.

Mission planning
Our mission planner is semiautonomous.
Under the traffic rules, we use a rule-based
mechanism to autonomously assign the path
trajectory, such as for lane change, merge,
and passing. In more complex scenarios, such
as parking and recovering from operational
mistakes, the driver can supervise the path. In
either case, once the path is assigned, the local
motion planner is launched.

Our mission planner’s basic policy is that
we drive on the cruising lane throughout the
route provided by a commodity navigation
application. The lane is changed only when
our autonomous vehicle is passing the
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preceding vehicle or approaching an intersec-
tion followed by a turn.

Motion planning
The motion planner is a design knob for
autonomous driving that corresponds to the
driving behavior, which is not identical
among users and environments. Hence, our
platform provides only a basic motion-plan-
ning strategy. A high-level intelligence must
be added on top of this platform, depending
on the target scenarios.

In unstructured environments, such as
parking lots, we provide graph-search algo-
rithms, such as A*,8 to find a minimum-cost
path to the goal in space lattices.9 In structured
environments, such as roads and traffic lanes,
on the other hand, the density of vertices and
edges is likely high and not uniform, which
constrains the selection of feasible headings.
We therefore use conformal spatiotemporal
lattices to adapt the motion plan to the envi-
ronment.10 State-of-the-art research encour-
ages the implementation of these algorithms.1

Path following
We control our autonomous vehicle to follow
the path generated by the motion planner.
We use the Pure Pursuit algorithm to solve
this path-following problem.11 According to
the Pure Pursuit algorithm, we break down
the path into multiple waypoints, which are
discrete representations of the path. At every
control cycle, we search for the close way-
point in the heading direction. We limit the
search to outside of the specified threshold
distance so that we can relax the change in
angle in the case of returning onto the path
from a deviated position. The velocity and
angle of the next motion are set to such values
that bring the vehicle to the selected way-
point with predefined curvature.

We update the target waypoint accord-
ingly until the goal is reached. The vehicle
keeps following updated waypoints and
finally reaches the goal. If the control of gas
and brake stroking and steering is not aligned
with the velocity and angle output of the
Pure Pursuit algorithm because of some
noise, the vehicle could temporarily get off
the path generated by the motion planner.
Localization errors could also pose this prob-
lem. As a result, the vehicle could come

across unexpected obstacles. To cope with
this scenario, our path follower ensures a
minimum distance to obstacles, overwriting
the given plan.

Software stack
We build the software stack of autonomous
driving on the basis of open-source software.
As a result, even the code implementation of
the algorithms we have discussed becomes
accessible to the public. The software-stack
framework is called Autoware, and it can be
downloaded from the project repository
(https://github.com/cpfl/autoware).

In this section, we introduce the core com-
ponents of open-source software used in
Autoware. Our autonomous vehicle is entirely
operated by Autoware. It has already run over
a few hundred miles in Nagoya, Japan.

Robot Operating System
Autoware is based on Robot Operating Sys-
tem (www.ros.org), a component-based mid-
dleware framework developed for robot
applications. In ROS, the system is abstracted
by nodes and topics. The nodes represent
individual component modules, whereas the
topics hold input and output data between
nodes. This is a strong abstraction model for
compositional development.

ROS nodes are usually standard Cþþ
programs. They can use any other software
libraries installed in the system. Meanwhile,
ROS nodes can launch several threads implic-
itly. Topics are also managed by first-in, first-
out queues when accessed by multiple nodes
simultaneously. Real-time issues, however,
must be addressed.

ROS also provides an integrated visualiza-
tion tool called RViz. Figure 3 shows an
example of visualization for perception tasks
in Autoware. The RViz viewer is useful for
checking the status of tasks.

Point-Cloud Library
Point-Cloud Library (http://pointclouds.org)
was developed to manage point-cloud data.
It supports many algorithms in the library
package, including the 3D NDT algorithm.3

Autoware uses this PCL version of 3D NDT
for localization and mapping. In our experi-
ence, the localization or mapping error can
be capped at 10 to 20 cm.
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Another usage of PCL in Autoware is to
implement the Euclidean clustering algo-
rithm for object detection. In addition, ROS
uses PCL internally in many places. For
example, the RViz viewer provided by ROS
is a PCL application.

OpenCV
OpenCV (http://opencv.org) is a popular
computer vision library for image processing.
It supports the DPM algorithm4 and the His-
togram of Oriented Gradients features.5 Apart
from algorithm implementation, OpenCV
provides API library functions (such as load-

ing, converting, and drawing images), which
are useful to construct a framework of image-
processing programs. Autoware combines
OpenCV with the RViz viewer of ROS for
visualization.

CUDA
CUDA (https://developer.nvidia.com/cuda-
zone) is a framework for general-purpose com-
puting on GPUs (GPGPU). Because complex
algorithms of autonomous driving, such as
NDT, DPM, and A*, are often computing
intensive and data parallel, their execution
speeds can be improved significantly using

Figure 3. Visualization tools for developers. Both a 3D map plane and a 2D image plane can

be displayed. The results of traffic light recognition and path generation are also displayed.
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CUDA. For example, the DPM algorithm
contains a nontrivial number of computing-
intensive and data-parallel blocks that can be
significantly accelerated by CUDA.12 Because
autonomous vehicles need real-time perform-
ance, CUDA is a strong way to speed up the
algorithms.

Android
Autoware uses Android (www.android.com)
applications for the human-driver interface.
The driver can search for the route using a navi-
gation map on an Android tablet (see Figure
4). The result of a searched route is reflected to
the 3D map used in Autoware.

openFrameworks
Another piece of software used in Autoware
for the driver interface is openFrameworks
(www.openframeworks.cc). Although Android
applications are functional to receive an input
from the driver, openFrameworks provides
creative displays to visualize the status of
autonomous driving to the driver. For exam-

ple, it can be used with smart glasses, as shown
in Figure 4.

Datasets
In our platform, a 3D map is required to
localize the autonomous vehicle. As we men-
tioned earlier, we can generate a 3D map
using Autoware. However, this turns into a
time-consuming routine. It should be pro-
vided by mapmakers as part of general data-
sets for autonomous driving. We are
collaborating with Aisan Technology, a map-
maker in Japan, for field-operational tests of
autonomous driving in Nagoya. Autoware is
designed to be able to use both their 3D
maps and those generated by Autoware itself.
This compatibility to the third-party format
allows Autoware to be deployed widely in
industry and academia.

Simulation of autonomous driving also
needs datasets. Field-operational tests always
take some risk, and they are not always effi-
cient in time, so simulation is desired in most
cases. Fortunately, ROS provides an excellent

Figure 4. User interface tools for drivers. Smart tablets are used to input the destination of the trip, displaying a route

candidate. To present more valuable information to drivers, smart glasses and displays can be used together.
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record-based simulation framework called
ROSBAG. We suggest that ROSBAG is used
primarily to test functions of autonomous
vehicles, and field-operational tests are per-
formed for a real verification.

Autoware lets researchers and developers
use such structured 3D maps and record data.
Simulation of autonomous driving on a 3D
map can be easily conducted using Autoware.
Samples of these datasets can also be down-
loaded through the Autoware website. Given
that vehicles and sensors are often expensive,
simulation with the sample datasets might be
preferred to on-site experiments in some cases.

Performance requirements
Considering that cameras and Lidar sensors
often operate at 10 to 100 Hz, each task of
autonomous driving must run under some
timing constraints.

We provide a case study of our autono-
mous driving system on several computers
employing Intel CPUs and Nvidia GPUs. On
Intel CPUs, such as the Xeon and Core i7 ser-
ies, the A* search algorithm consumes the
most time, requiring a scale of seconds or
more, if the search area is large. Although
faster is better, this might not be a significant
problem given that A* search is often used for
mission planning, which launches only when
the path needs to change. A more significant
problem resides in real-time tasks, such as
motion planning, localization, and object
detection. The DPM algorithm spends more
than 1,000 ms on VGA-size images with the
default parameter setting in OpenCV, whereas
the NDT and the State Lattice algorithms can
run in several tens of milliseconds. Their exe-
cution times must be reduced to drive autono-
mous vehicles in the real world.

We implemented these algorithms using
Nvidia GPUs. As reported elsewhere,12 Nvi-
dia GPUs bring 5 to 10 times performance
improvements over Intel CPUs for the DPM
algorithm. In fact, we also observed equiva-
lent effects on the A*, NDT, and State Lattice
algorithms, although the magnitude of
improvement depends on the parameters.

One particular case study of our autono-
mous driving system used a laptop composed
of an Intel Core i7-4710MQ CPU and an
Nvidia GTX980M GPU. We demonstrated
that most real-time tasks, including the NDT

and State Lattice algorithms, can run within
50 ms, whereas the DPM algorithm still con-
sumes more than 100 to 200 ms on the GPU.
This implies that our system currently exhibits
a performance bottleneck in object detection.
Assuming that the vehicle is self-driving at 40
km/hour in urban areas and that autonomous
functions should be effective every 1 m, the
execution time of each real-time task must be
less than 100 ms, although a multitasking
environment could make the problem more
complicated. If our autonomous driving sys-
tem remains as is, the performance of GPUs
must improve by at least a factor of two to
meet our assumption. Application-specific
integrated circuit and field-programmable
gate array solutions could also exist.

Real-time tasks other than planning, local-
ization, and detection are negligible in terms
of execution time, but some tasks are very sen-
sitive to latency. For example, a vehicle-con-
trol task in charge of steering and acceleration
and brake stroking should run with a few-
milliseconds latency.

Finally, because such throughput- and
latency-aware tasks are coscheduled in the
same system, operating systems must be reli-
able to multitask real-time processing. This
leads to the conclusion that codesign of hard-
ware and software is an important considera-
tion for autonomous driving.

T his article has introduced an open
platform for commodity autonomous

vehicles. The hardware components, includ-
ing ZMP Robocars, sensors, and computers,
can be purchased in the market. The autono-
mous-driving algorithms are widely recog-
nized, and Autoware can be used as a basic
software platform comprising ROS, PCL,
OpenCV, CUDA, Android, and openFrame-
works. Sample datasets, including 3D maps
and simulation data, are also packaged as
part of Autoware. To the best of our knowl-
edge, this is the first autonomous-vehicles
platform accessible to the public. MICRO
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