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We argue that social networks differ from most other types of networks, including technological
and biological networks, in two important ways. First, they have non-trivial clustering or network
transitivity, and second, they show positive correlations, also called assortative mixing, between the
degrees of adjacent vertices. Social networks are often divided into groups or communities, and
it has recently been suggested that this division could account for the observed clustering. We
demonstrate that group structure in networks can also account for degree correlations. We show
using a simple model that we should expect assortative mixing in such networks whenever there is
variation in the sizes of the groups and that the predicted level of assortative mixing compares well
with that observed in real-world networks.

I. INTRODUCTION

The last few years have seen a burst of interest within
the statistical physics community in the properties of net-
worked systems such as the Internet, the World Wide
Web, and social and biological networks [1, 2, 3, 4]. Re-
searchers’ attention has, to a large extent, been focused
on properties that seem to be common to many different
kinds of networks, such as the so-called “small-world ef-
fect” and skewed degree distributions [5, 6, 7]. In this pa-
per, by contrast, we highlight some apparent differences
between networks, specifically between social and non-
social networks. Our observations appear to indicate that
social networks are fundamentally different from other
types of networked systems.

We focus on two properties of networks that have re-
ceived attention recently. First, we consider degree corre-
lations in networks. It has been observed that the degrees
of adjacent vertices in networks are positively correlated
in social networks but negatively correlated in most other
networks [8]. Second, we consider network transitivity or
clustering, the propensity for vertex pairs to be connected
if they share a mutual neighbor [5]. We argue that the
level of clustering seen in many non-social networks is no
greater than one would expect by chance, given the ob-
served degree distribution. For social networks however,
clustering appears to be far greater than we expect by
chance.

We conjecture that the explanation for both of these
phenomena is in fact the same. Using a simple network
model, we argue that if social networks are divided into
groups or communities, this division alone can produce
both degree correlations and clustering.

The outline of the paper is as follows. In Sec. II we
discuss the phenomenon of degree correlation and sum-
marize some empirical results for various networks. In
Sec. III we do the same for clustering. We also present
theoretical arguments that suggest that the clustering
seen in non-social networks is of about the magnitude
one would expect for a random graph model with pa-
rameters similar to real networks. Then in Sec. IV we
present analytic results for a simple model of a social

network divided into groups. This model, which was in-
troduced previously [9], is known to generate high levels
of clustering. Here we show that it can also explain the
presence of correlations between the degrees of adjacent
vertices. In Sec. V we compare the model’s predictions
concerning degree correlations against two real-world so-
cial networks, of collaborations between scientists and
between businesspeople. In the former case we find that
the model is in good agreement with empirical observa-
tion. In the latter we find that it can predict some but
not all of the observed degree correlation, and we con-
jecture that the remainder is due to true sociological or
psychological effects, as distinct from the purely topolog-
ical effects contained in the model. In Sec. VI we give
our conclusions.

II. DEGREE CORRELATIONS

In studies of the network structure of the In-
ternet at the level of autonomous systems, Pastor-
Satorras et al. [10] have recently demonstrated that the
degrees of adjacent vertices in this network appear to be
anticorrelated. They measured the mean degree 〈knn〉 of
the nearest neighbors of a vertex as a function of the de-
gree k of that vertex, and found that the resulting curve
falls off with k approximately as 〈knn〉 ∼ k−1/2. Thus,
vertices of high degree k tend to be connected, on aver-
age, to others of low degree, and vice versa. A simple way
of quantifying this effect is to measure a correlation co-
efficient of the degrees of adjacent vertices in a network,
defined as follows.

Suppose that pk is the degree distribution of our net-
work, i.e., the fraction of vertices in the network with
degree k, or equivalently the probability that a vertex
chosen uniformly at random from the network will have
degree k. The vertex at the end of a randomly chosen
edge in the network will have degree distributed in pro-
portion to kpk, the extra factor of k arising because k
times as many edges end at a vertex of degree k than at
a vertex of degree one [11, 12, 13]. Commonly we are
interested not in the total degree of the vertex at the
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end of an edge, but in the “excess degree,” which is the
number of edges attached to the vertex other than the
one we arrived along, which is obviously one less than
the total degree. The properly normalized distribution
of the excess degree is

qk =
(k + 1)pk+1

∑

k kpk
. (1)

We then define the quantity ejk, which is the joint prob-
ability that a randomly chosen edge joins vertices with
excess degrees j and k.

Now consider a network in which the vertices have
given degrees (the value of the degrees being called the
“degree sequence”), but which is in all other respects
random. That is, the network is drawn uniformly at ran-
dom from the ensemble of all possible networks with the
given degree sequence. This is the so-called configura-
tion model [12, 13, 14, 15], which we can use as a handy
null model for testing our results. In the configuration
model the expected value of the quantity ejk is simply
ejk = qjqk, and by its deviation from this value we can
quantify the level of degree correlation present, relative
to the null model. We define [8]

r =
1

σ2
q

∑

jk

jk(ejk − qjqk), (2)

where σ2
q =

∑

k k2qk −
[
∑

k kqk

]2
is the variance of the

distribution qk. The quantity r will be positive or neg-
ative for networks with positive or negative degree cor-
relations respectively. In the ecology and epidemiology
literatures these two cases are called “assortative” and
“disassortative” mixing by degree, and this nomenclature
has been adopted by many physicists also.

The findings of Pastor-Satorras et al. [10] discussed
above suggest that the Internet should have a negative
value for r, and this indeed is the case. The most re-
cent structural measurements of the autonomous-system
graph of the Internet [16] yield a value of r = −0.193 ±
0.002. It now appears that similar results apply to es-
sentially all other networks except social networks. In
Refs. [8] and [17] we found that almost all networks seem
to be disassortatively mixed, i.e., have negative values of
the assortativity coefficient r, except for social networks,
which are normally assortative. A small number of net-
works yield inconclusive results because the errors on r
are bigger than its value, but other than these few, the
pattern appears essentially perfect.

Here we propose that this striking pattern arises be-
cause disassortativity is the natural state for all networks,
in a sense that we will make clear shortly. Left to their
own devices, we conjecture, networks normally have neg-
ative values of r. In order to show a positive value of r,
a network must have some specific additional structure
that favors assortative mixing. We suggest in Sec. IV
that division into communities or groups provides such a
structure in social networks.

Our conjecture that most networks will be disassorta-
tive is motivated by the work of Maslov et al. [18]. Using
computer simulations, they showed that on small net-
works, disassortative mixing is produced if one restricts
the network topology to having at most one edge between
any pair of vertices. The same result can be demon-
strated analytically as well [19]. How small a network
need be to show this effect depends on the degree dis-
tribution; to see significant disassortativity, the highest-
degree vertices in the network need to have degree on the
order of

√
n, where n is the total number of vertices, so

that there is a substantial probability of some vertex pairs
sharing two or more edges. (Obviously if there is negli-
gible probability of a double edge occurring anywhere
in the network, then the restriction of having no double
edges will have no effect.) The Internet is a particularly
good example of the effect, since it has a degree distribu-
tion that appears approximately to follow a power law,
pk ∼ k−α with α constant [16, 20], and the fat tail of
the power law produces many vertices of sufficiently high
degree. However, a number of other networks also fit
the bill: the World Wide Web, peer-to-peer networks,
food webs, neural networks, and metabolic networks all
have vertices of sufficiently high degree, at least in some
cases. In their most common representations these net-
works also have only single edges between vertices, and
hence we would expect them to have r < 0, and calcu-
lations of r from structural data confirm that this is the
case [17].

In fact, most networks have only single edges between
their vertices. Although it is possible to have double
edges in some networks, in practice these are usually
ignored even where they exist and all edges are repre-
sented as single. For instance, in the World Wide Web
it is possible, and even common, for a Web page to link
twice or more to the same other page, creating a multiple
link. Such links are however normally recorded as single
by Web crawler programs, and hence any information
about multiple links is lost. Thus many networks may
have single edges only because that is the way researchers
have chosen to represent them, and observed properties
such as disassortativity may be purely a product of this
choice of representation rather than a fundamental law
of nature. Other networks may truly have single edges—
metabolic networks and food-webs are possible examples
of this.

Social networks also usually have only single edges be-
tween vertex pairs. Two people are either acquainted
with one another or not—we do not normally have a
concept of being “doubly acquainted” with a person.
Nonetheless, the assortativity coefficient r is positive, and
sometimes very positive, for almost all social networks
measured [8, 17]. This appears to indicate some special
structure in social networks that distinguishes them from
other types of networks. A revealing clue about what this
special structure might be comes from network transitiv-
ity, as we now describe.
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III. CLUSTERING

Watts and Strogatz [5] have pointed out that most net-
works appear to have high transitivity, also called clus-
tering. That is, the presence of a connection between
vertices A and B, and another between B and C, makes
it likely that there will also be a connection between A
and C. To put it another way, if B has two network neigh-
bors, A and C, they are likely to be connected to one
another, by virtue of their common connection with B.
In topological terms, there is a high density of triangles,
ABC, in the network, and clustering can be quantified
by measuring this density:

C =
3× number of triangles on the graph

number of connected triples of vertices
, (3)

where a “connected triple” means a vertex connected di-
rectly to an unordered pair of others. In physical terms,
C is the probability, averaged over the network, that two
of your friends will be friends also of one another. (This is
in fact only one definition of the clustering coefficient. An
alternative definition, given in [5], has also been widely
used. The latter however is difficult to evaluate analyti-
cally, and so we avoid it here.)

The value of the clustering coefficient in the null con-
figuration model can be calculated in a straightforward
fashion [21, 22]. Suppose that two neighbors of the same
vertex have excess degrees j and k. The probability that
one particular edge in the network falls between these
two vertices is 2 × j/(2m) × k/(2m), where m is the to-
tal number of edges in the network. The total number
of edges between the two vertices in question is m times
this quantity, or jk/(2m). Both j and k are distributed
according to (1), since both vertices are neighbors of A
and, averaging over this distribution, we then get an ex-
pression for the clustering coefficient:

C =
1

2m

[

∑

k

kqk

]2

=
1

n

[

〈k2〉 − 〈k〉
]2

〈k〉3 , (4)

where averages are over all vertices and we have made
use of 2m = n〈k〉.

Normally this quantity goes as n−1 and so is very small
for large graphs. However, some graphs are not large,
and hence C is not negligible. Consider for example
the foodweb of organism in Little Rock Lake, WI, which
was originally analyzed by Martinez [23] and has been
widely studied in the networks literature. This network
has n = 92, 〈k〉 = 21.0, and 〈k2〉 = 655.2. Plugging
these figures into Eq. (4) gives C = 0.47. The measured
value of C is 0.40. Thus it appears that we need invoke
no special clustering process to explain the clustering in
this network. Similar results can be found for other small
networks.

This argument can also be applied to some larger net-
works as well, particularly those with power-law degree
distributions. The fat tail of the degree distribution in
power-law networks can affect the value of the clustering

coefficient strongly. To see this consider first how the
degree of the highest-degree vertex in the configuration
model varies with system size [4].

The probability of there being exactly m vertices of
degree k in the network and no vertices of degree greater
than k is

(

n
m

)

pm
k (1 − Pk)n−m, where

Pk =

∞
∑

k′=k

pk′ , (5)

is the probability that a vertex has degree greater than
or equal to k. Then the probability hk that the highest
degree in the network is k is

hk =

n
∑

m=1

(

n

m

)

pm
k (1 − Pk)n−m

= (pk + 1 − Pk)n − (1 − Pk)n, (6)

and the expected value of the highest degree is kmax =
∑

k khk.
The value of hk tends to zero for both small and large

values of k, and the sum over k is dominated by the
terms close to the maximum. Thus, in most cases, a good
approximation to the expected value of the maximum
degree is given by the modal value. Differentiating and
observing that dPk/dk = pk, we find that the maximum
of hk occurs when
(

dpk

dk
− pk

)

(pk + 1 − Pk)n−1 + pk(1 − Pk)n−1 = 0, (7)

or kmax is a solution of

dpk

dk
≃ −np2

k, (8)

where we have made the assumption that pk is sufficiently
small for k >∼ kmax that npk ≪ 1 and Pk ≪ 1. For a
degree distribution with a power-law tail pk ∼ k−α, we
then find that

kmax ∼ n1/(α−1). (9)

(As shown by Cohen et al. [24], a simple rule of thumb
that leads to the same result is that the maximum degree
is roughly the value of k that solves nPk = 1.)

Most networks of interest have α < 3, which means
〈k2〉 ∼ k3−α

max ∼ n(3−α)/(α−1) and 〈k〉 is independent of n.
Then (4) gives

C ∼ n(7−3α)/(α−1). (10)

If α > 7
3 , this means that C tends to zero as the graph be-

comes large, although it does so slower than the explicit
C ∼ n−1 of Eq. (4). At α = 7

3 , C becomes constant
(or logarithmic) in the graph size. And remarkably, for
α < 7

3 it actually increases with increasing system size,

becoming arbitrarily large as n → ∞. Thus for α <∼ 7
3 ,

we might expect to see quite large values of C even in
large networks.
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Taking the case of the World Wide Web, for example,
we find the predicted value of the clustering coefficient
for the configuration model is C = 0.048 [21], while the
measured value is 0.11—certainly not perfect agreement,
but of the right order of magnitude. Other examples err
in the opposite direction. Maslov et al. [18] for instance
cite the example of the Internet, for which they show
using numerical simulations that the observed clustering
is actually lower than that expected for an equivalent
random graph model.

It is worth noting that Eq. (10) implies the clustering
coefficient can be greater than 1 if α < 7

3 . Physically this
means that there will be more than one edge on aver-
age between two vertices that share a common neighbor.
This is perhaps at odds with the conventional interpre-
tation of the clustering coefficient as the probability that
there exists any edge between the given two vertices—
normally one would not distinguish between the case
where there are two edges and the case where there is
one. (Indeed, as mentioned in Sec. II, in many networks,
one ignores double edges altogether.) If one takes this
approach, then the value of the clustering coefficient is
modified for networks that would otherwise have C > 1
as follows.

Consider again two vertices that are neighbors of ver-
tex A, with excess degrees j and k. The probability that a
particular edge falls between them is 2×j/(2m)×k/(2m),
as before, and the probability that it does not is 1 minus
this quantity. Then the probability that no edge falls
between this pair is

[

1 − jk

2m2

]m

≃ e−jk/2m, (11)

where the equality becomes exact in the limit of large m.
Thus the probability of any edge falling between the two
vertices is 1− e−jk/2m, and the correct expression for the
clustering coefficient is the average of this:

C =
∑

jk

qjqk

(

1 − e−jk/2m
)

. (12)

In fact, however, using this expression makes only the
smallest of differences to the expected value of C on, for
example, the World Wide Web.

All of this demonstrates that for many non-social net-
works, including foodwebs, the Internet, and the World
Wide Web, clustering can be explained by a simple ran-
dom model. The same however is not true of social net-
works. It turns out that social networks in general have
a far higher degree of clustering than the corresponding
random model. We give four examples: the widely stud-
ied network of film-actor collaborations [5, 7], collabora-
tion networks of mathematicians [25, 26] and company
directors [27], and an email network [28]. For these four
networks the theory presented above predicts values of
the clustering coefficient of 0.0098, 0.00015, 0.0035, and
0.017. The actual measured values are 0.20, 0.15, 0.59,
and 0.17, in each case at least an order of magnitude

greater than the prediction. The implication appears to
be that there is some mechanism producing clustering in
social networks that is not present at a significant level
in non-social networks (or not at least in the examples
studied here). Recent work [9, 29, 30, 31, 32] suggests
a possible candidate theory, that social networks contain
groups, or “community structure” [41].

IV. COMMUNITY STRUCTURE IN

NETWORKS

In [9] one of us proposed a simple model of a network
with community structure and showed that this structure
produces substantial clustering, with values of C that do
not go to zero as the network size becomes large. Thus
the results of the preceding section could be explained if
social networks possess community structure and other
types of networks do not (or they possess it to a lesser
degree). We now show that the same distinction can
also explain the observed difference in degree correlations
between social and non-social networks.

In our model the network is divided into groups and
each individual can belong to any number of groups. In-
dividuals do not necessarily know all those with whom
they share a group, but instead have probability p of ac-
quaintance. They have probability zero of knowing those
with whom they do not share a group. Mathematically
the model can be represented as a bond percolation pro-
cess with occupation probability p on the network formed
by the projection of a suitable bipartite graph of individ-
uals and groups onto just the individuals, as shown in
Fig. 1. The percolation properties of the model can be
solved exactly using generating function methods.

In [9] the model was studied in a simple version in
which the size of all groups was assumed the same. This
case can account for the presence of clustering in the
network, and is straightforward to treat mathematically.
However, it is inadequate for our purposes here, since
it does not produce any degree correlation. Degree cor-
relation arises because individuals who belong to small
groups tend to have low degree and are connected to oth-
ers in the same group, who also have low degree. Sim-
ilarly those in large groups tend to have higher degree
and are also connected to one another. Thus, the model
should give rise to assortative mixing provided there is
enough variation in the sizes of groups. As we will see,
this is indeed the case.

In addition to the parameter p, we characterize the
model by two probability distributions: rm is the prob-
ability that an individual belongs to m groups and sn is
the probability that a group contains n individuals. Sub-
ject to the constraints imposed by these distributions, the
assignment of individuals to groups is entirely random.

To proceed we calculate the joint distribution ejk of the
excess degrees of vertices at the ends of an edge. Noting
that the total number of edges in groups of size n goes
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FIG. 1: The structure of the network model studied in Sec. IV.
(a) We represent individuals (A–K) and the groups (1–4) to
which they belong with a bipartite graph structure. (b) The
bipartite graph is projected onto the individuals only, giving
a network with edges between any pair of individuals who
share a group. (c) The actual social connections between
individuals are chosen by bond percolation on this projection
with bond occupation probability p. The net result is that
individuals have probability p of knowing others with whom
they share a group.

as snn(n − 1), we write

ejk = e0

∑

n

snn(n − 1)P (j, k|n) (13)

where P (j, k|n) is the probability that an edge that be-
longs to a group of size n connects vertices of excess de-
grees j and k, and e0 is a constant whose value can be
calculated from the requirement that ejk be normalized,
so that

∑

jk ejk = 1.
We now decompose j and k in the form j = jin + jout,

k = kin + kout, where jin, kin are the numbers of con-
nections to vertices within the group that the two ver-
tices share, and jout, kout are the numbers of connections

outside that group. The distributions of jin and kin are
simply binomial, and hence P (j, k|n) factors into terms
depending only on j and k thus:

P (j, k|n) =
∑

jin

(

n − 2

jin

)

pjinqn−2−jinP (jout)

×
∑

kin

(

n − 2

kin

)

pkinqn−2−kinP (kout), (14)

where P (jout) is the probability distribution of jout,
which is independent of jin, and similarly for kout.

To evaluate this expression we introduce the following
generating functions for the distributions rm and sn:

f0(z) =

∞
∑

m=0

rmzm, f1(z) =
1

f ′

0(1)

∞
∑

m=0

mrmzm−1, (15)

g0(z) =

∞
∑

n=0

snzn, g1(z) =
1

g′0(1)

∞
∑

n=0

nsnzn−1. (16)

Physically, f0(z) is the generating function for the num-
ber of groups an individual belongs to, and f1(z) is the
generating function for the number groups that an in-
dividual in a randomly selected group belongs to, other
than the randomly selected group itself. Similarly g0(z)
generates the group sizes and g1(z) generates the num-
ber of other individuals in a group to which a randomly
selected individual belongs. Of these others, our ran-
domly selected individual is connected to a number bi-
nomially distributed according to the probability p and
thus generated by the simple generating function pz + q,
where q = 1 − p. Averaging over the group sizes, the
number of neighbors of a randomly chosen individual
within one of the groups to which they belong is gen-
erated by g1(pz + q), and an individual belonging to a
randomly chosen group will have a number of neighbors
in other groups generated by f1(g1(pz + q)). This then
gives us precisely the quantity P (jout) of Eq. (14), which
is equal to the coefficient of zjout in f1(g1(pz + q)), and
similarly for P (kout).

Combining Eqs. (13) and (14) we find that ejk is gen-
erated by the double probability generating function

E(x, y) =
∑

jk

ejkxjyk

= g2

(

(px + q)(py + q)
)

× f1(g1(px + q))f1(g1(py + q)), (17)

where

g2(z) =
1

g′′0 (1)

∞
∑

n=0

n(n − 1)snzn−2. (18)

Then, making use of Eqs. (1) and (2) and the fact that
qk =

∑

j ejk, we can write the assortativity coefficient r
as

r =
∂x∂yE − (∂xE) (∂yE)

∂x(x∂xE) − (∂xE) (∂yE)

∣

∣

∣

∣

∣

x=y=1

=
P
Q , (19)
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where the numerator and denominator P and Q are

P = pµ2
1ν

2
1

[

(ν4 − ν3)(ν2 − ν1) − (ν3 − ν2)
2
]

(20a)

Q = µ1ν1(ν2 − ν1)
[

(µ2 − µ1)(ν2 − ν1)
2 + µ1ν1(2ν1 − 3ν2 + ν3)

]

+ p
[

(µ2
1 − µ2

2 − µ1µ2 + µ1µ3)(ν2 − ν1)
4 + µ1µ2ν1(ν2 − ν1)

2(2ν1 − 3ν2 + ν3)

+ µ2
1ν1

(

ν2
1(2ν2 + ν3 − ν4) − ν1(ν3 − ν2)

2 − ν1ν2(ν4 − 5ν2) + ν2
2 (3ν2 − ν3)

)]

(20b)

In this expression the quantities µn and νn are the nth
moments of the distributions rm and sn respectively.
Thus, given the distributions and the probability p it
is elementary, if tedious, to calculate r. Below we ap-
ply this expression to two real-world example networks.
First, however, a few points are worth noting.

It is straightforward to show, though certainly not ob-
vious to the eye, that the expression for r, Eq. (19), is
non-negative for all distributions rm and sn, so that our
model always produces an assortatively mixed network,
as our intuition suggests.

Now consider the simple case in which each individual
belongs to exactly one group, and the group sizes have a
Poisson distribution. In this case, Eq. (19) gives r = p,
and we can achieve any value of r by tuning the parame-
ter p. In particular, if each individual knows all others in
their group then p = 1 and we have perfect assortativity.
This is reasonable, since in this case each individual in
a group has the exact same number of neighbors. This
case is a rather pathological one however, since if every-
one belongs to only one group, then the network consists
of many isolated groups and most people are not con-
nected to one another. To make things more realistic,
let us allow the number of groups to which individuals
belong also to vary according to a Poisson distribution.
Then we find that

r =
p

1 + µ + νµp
, (21)

where µ ≡ µ1 and ν ≡ ν1 are the means of the two distri-
butions. Thus as the two means increase, the correlation
decreases. The decrease with µ is easily understood—
the more groups an individual belongs to, the less the
relative within-group degree correlation upon which the
assortativity depends: the within-group correlation is di-
luted by all the other groups the individual belongs to.
The behavior with ν is a little more subtle. The width of
the Poisson distribution of group sizes goes as 1/

√
ν as

a fraction of the mean, and hence the effective variation
in size between groups decreases with increasing ν. It is
this decrease that drives r towards zero.

V. EXAMPLES

We now apply our model to two real-world example
networks. In the first case, as we will see, it gives a value
of r in excellent agreement with the real network. In
the second it underestimates r by about a factor of two,
indicating that group structure can account for only a
portion of the observed assortativity, the rest, we conjec-
ture, being due to true social effects.

A. Collaboration network

Networks of coauthorship of scientists or other aca-
demics provide some of the best-documented examples of
social networks [25, 33]. Using bibliographic databases it
is possible to construct large coauthorship networks with
high reliability, and these networks are true social net-
works, in the sense that it seems highly likely that two
authors who write a paper together are acquainted.

Fig. 2 shows a coauthorship network of physicists who
conduct research on networks. The network was con-
structed using names drawn from the large bibliography
of Ref. [4] and coauthorship data from preprints sub-
mitted to the condensed matter section of the Physics
E-print Archive at arxiv.org between Jan 1, 1995 and
April 30, 2003. To find the groups in the network, we fed
it through the community structure algorithm of Girvan
and Newman [29], producing the division shown by the
colors in the figure. The figure shows only the largest
component of the network. There are also 36 smaller
components, which were included in our calculations even
though they are not shown.

The moments of the distributions rm and sn are easily
extracted from the network by direct summation. To find
the value of p, we counted the number of edges in the net-
work and divided by the total number of possible within-
group edges, giving p = 0.178. Feeding this value and
our figures for the moments into Eqs. (19) and (20), we
then find a predicted value of r = 0.145. The measured
value for the real network is 0.174 ± 0.045. (The error
is calculated according to the prescription given in [17].)
These two figures are in agreement within the statistical
error on the latter.
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FIG. 2: The largest component of the network of coauthorships described in the text. This component contains 142 scientists,
and there are 36 other components, of sizes ranging from 1 to 5, containing 84 more. The vertices are colored according to
the communities found using the algorithm of Ref. [29]. The communities correspond reasonably closely to geographical and
institutional divisions between the scientists shown.

While this result by no means proves that the group
structure is responsible for assortativity in this network,
it tells us that no other assumption is necessary to give
the observed value of r. With group structure as shown
in the figure and otherwise random mixing, we would get
a network with exactly the assortativity that is observed
in reality, within expected error.

B. Boards of directors

Davis and collaborators [27, 34] have studied networks
of the directors of companies in which two directors are
considered connected if they sit on the board of the same
company. They studied the Fortune 1000, the one thou-
sand US companies with the highest revenues, for 1999,

and assembled a near-complete director network from
publicly available data. The network consists of 7673 di-
rectors sitting on 914 boards. It provides a particularly
simple example of our method, for two reasons. First,
the groups in the network through which individuals are
acquainted are provided for us—they are the boards of
directors. Second, it is assumed that directors are ac-
quainted with all those with whom they share a board,
so that the parameter p in our model is 1.

The distributions of boards per director and directors
per board have been studied before [13]. We note that
most directors (79%) sit on only one board and that there
is considerable variation in the size of boards (from 2
to 35 members). Thus we would expect strong assor-
tative mixing in the network, and indeed we find that
r = 0.276 ± 0.004. Taking the moments of the mea-
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sured distributions rm and sn for the network and set-
ting p = 1, Eq. (19) gives a value of r = 0.116 for our
model. So it appears that the presence of groups in the
network can explain about 40% of the assortativity we
observe in this case, but not all of it. There is some ad-
ditional assortativity in addition to the purely topological
effect of the groups, and we conjecture that this is due to
some true sociological or psychological effect in the way
in which acquaintanceships are formed. One possibility
is suggested by the analysis of the directorships data by
Newman et al. [13], who found that directors who sit on
many boards tend to sit on them with others who sit on
many boards. Since those who sit on many boards will
also tend to have high degree, we would expect this ef-
fect to add assortativity to the network, but the effect is
missing from our model in which board membership is
assigned at random.

In a sense, our model is giving a baseline against which
to measure the value of r; it tells us when the value we
see is simply what would be expect by random chance,
as in the collaboration network above, and when there
must be additional effects at work, as in the boards of
directors.

VI. CONCLUSIONS

In this paper we have argued that social and non-social
networks differ in two important ways. First, they show

distinctly different patterns of correlation between the
degrees of adjacent vertices, with degrees being positively
correlated (assortative mixing) in most social networks
and negatively correlated (disassortative mixing) in most
non-social networks. Second, social networks show high
levels of clustering or network transitivity, whereas clus-
tering in many non-social networks is no higher than one
would expect on the basis of pure chance, given the ob-
served degree distribution.

We have shown that both of these differences can be
explained by the same hypothesis, that social networks
are divided into communities, and non-social networks
are not. We have studied a simple model of community
structure in social networks in which individuals belong
to groups and are acquainted with others with whom they
share those groups. The model is exactly solvable using
generating function techniques, and we have shown that
it gives predictions that are in reasonable and sometimes
excellent agreement with empirical observations of real-
world social networks.
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