
Case Study: IBM5 SYSTEM/360-370
ARCHITECTURE

Why has the IBM System/360-370
architecture been so success-
ful for so long? Case-study edi-
tors David Gifford and Alfred
Spector sought to answer this
question by talking to Andris
Padegs and Richard Case, two of
the key people responsible for
the 360/370 architecture, in
Cases’s IBM office in Thornwood,
New York, on August 8, 1986.

As the study shows, instruction-set design consti-
tuted only a small fraction of the effort behind the
development of the 360/370 architecture. Padegs
and Case describe the architecture and its specifica-
tion, and recount its evolution. They emphasize that
the architecture’s success can be attributed to a
sound initial design, but also to the precision of its
definition, the care that has been taken to ensure
that implementations meet architectural specifica-
tions, and the procedures by which improvements
have been managed. And, although the architecture
has not survived unchanged since its introduction in
1964, the initial concept was sufficiently good to al-
low IBM to engineer smooth customer transitions to
enhanced versions.

Near the end of the interview, Padegs and Case
comment on multiprocessing, reduced-instruction-
set computers, and address space limitations. IBM’s
largest current computers are all 360/370 family
multiprocessors; in order to support multiprocessing,
the architecture had to be revised to precisely spec-
ify the properties of memory accesses. With respect

to reduced-instruction-set computers, Padegs and
Case report that the common 360/370 instructions
execute in a single machine cycle. They also de-
scribe their empirical observation that the architec-
ture has needed addressing at a rate of about one bit
every 30 months, and comment on the implications
of this observation for the future of the architecture.

The editors observe that the careful standardiza-
tion process used by the architects is applicable out-
side the realm of hardware. With ever greater in-
vestments in user and system interfaces, standard-
ization and controlled evolution may be even more
important for software. The example of the efforts of
the 360/370 architects may benefit software imple-
mentors who want to build and maintain enduring
systems.

April 1987 Volume 30 Number 4 Communications of the ACM 291

ARTICLES

CASE STUDY:
IBM’S SYSTEM/360-370 ARCHITECTURE

The architecture of IBM’s System/360-370 series of compatible processors is
one of the most durable artifacts of the computer age. Through two major
revisions of the product line and 23 years of technological change, it has
remained a viable and versatile interface between machine and user.

DAVID GIFFORD and ALFRED SPECTOR

INTRODUCTION TO THE SYSTEM/360-370
ARCHITECTURE

DG As a starting point, can you tell us what the
scope of the 360 architecture is?
Padegs The architecture of a computer is the inter-
face between the machine and the software, though
not everything in this interface is significant to the
program and needs to be specified. When we defined
the System/BBO, we identified in the Principles of
Operation the parts of the architecture that could
differ among models. It might appear to the casual
observer that imprecision is a weakness of the archi-
tecture. Our experience with new models and fea-
tures confirms that it is very important not to define
everything precisely. Unnecessary specificity can
add significant cost to present and future implemen-
tations 3f an architecture. Thus it is important to
determine which pieces should be specified and
which should be left unpredictable.

AS Why “unpredictable” rather than “undefined”?
Padegs Both terms are acceptable, but we wanted
to emphasize that the architecture is, in fact, de-
fined; 1 he definition, however, specifies the opera-
tion to be unpredictable. That is, the operation may
vary among models, and on any one model may dif-
fer among instances. Otherwise someone could ask
when we are going to complete the definition.

0 1987 ACM OOOl-0782/87/0400-0292 750

AS Can you give us an example of something you
chose to leave unpredictable?
Padegs The result of the diagnose instruction is
one example. The instruction is used for various
maintenance functions, and each model has a sepa-
rate specification for its operation.

Case There are also instructions where it is unpre-
dictable which of two or more cases, each with its
specific result, will apply when a particular instruc-
tion is called. Take the character string comparison
operation. The operation starts at the beginning of
both strings and compares them character by char-
acter, and stops when it finds a difference. If the
character strings happen to cross a protection bound-
ary, then the operation may or may not cause a
protection exception, depending on the data in the
strings. However, the architecture will allow a
model to generate a protection exception even if the
protected data are not necessary for completing the
string comparison. We argued to ourselves that this
case represents a program bug, and so there’s really
no harm in raising the protection exception.

Padegs However, when it matters, we will go to a
fair amount of work to make the results of an in-
struction well defined. For example, in the presence
of virtual memory we actually may perform a trial
execution of the edit instruction in order to ensure
that all of the pages that the instruction needs are

292 Communications of the ACM April 1987 Volume 30 Number 4

Articles

available in memory. Once the dry run succeeds
without generating a page fault exception, then we
perform the actual execution. We introduced this
rather cumbersome requirement in System/370 for
the sake of compatibility. Normally we check for
the required pages on the basis of the designated
operand lengths. But the edit instruction can be
successfully executed without use of the entire des-
ignated source operand; in this case the required
size of one of the operands depends on the value of
the other. We wanted to make sure that a 360 pro-
gram that placed the required part of this operand
against the end of storage would not cause an un-
necessary page fault on a 370 machine.

DG Where did the idea for a unified processor
architecture come from?

Case There was an internal development project at
Poughkeepsie in the years just before 360 that was
known as the 8000 project-to the best of my knowl-
edge, by the way, that was when the word “architec-
ture” was first used in computing. People working
on that project believed that they could define a
single software interface that was common across
three different machines with a total performance
span of approximately 7 to 1. The advantage they
foresaw was in having a single system software de-
velopment effort and a single application program
development effort that would be useful for the
three machines. Even though the 8000 was never
built, some of the same people were involved in the
1961 SPREAD Committee, which was trying to come
up with a new product line for IBM. The SPREAD
Committee applied the idea of a unified processor

System/360 in Context

IBM’s System/360 was one of the most ambitious projects
in the history of the computer industry. First announced in
1964, System/360 was the first line of processors with both
upward and downward compatibility, which meant that any
program that ran on the most powerful machine would also
run on the least powerful, as well as vice versa. It was also
the first major product line designed for both business and
scientific applications. Twenty-three years later, the architec-
ture pioneered in System/360, and extended to System/370
in 1970 and to System/370-XA in 1983, continues to be
widely used. The Soviet Union provided one of the more
unique testimonials to the success of System/360 by func-
tionally duplicating several of its models to handle the bulk
of its large mainframe computing needs [12].

System/360 required an enormous commitment of re-
sources, both financial and human, and was therefore a gam-
ble for IBM. For the gamble to succeed, it was necessary
that the architecture remain salable for upwards of a decade.
The technological challenge was to anticipate the needs of
users several years down the line without pricing the ma-
chines out of the market, or making them too complicated or
inconvenient, in the meantime. For instance, IBM would have
liked to use integrated circuits in System/360, but found that
the technology was not quite ready. The best alternative was
a hybrid microminiaturization effort to standardize and
streamline circuit technology by using as much solid logic
technology as was viable at that time. Microprogramming,
which had been pioneered by Maurice Wilkes at Cambridge
University in the late 1950% was used to implement upwards
and downwards compatibility across different models of
System/SbO.

A major challenge for the architects of System/360 was
a suitable addressing strategy. The report of the SPREAD
Committee, which worked out the long-range plan for
System/360 in 1961, called for an increase in main memory
by two to three orders of magnitude. To do this with the
direct addressing approach current at that time would have

been inefficient, since the 24-bit addresses that it would have
taken to address 16 million memory positions would have
affected both storage capacity and performance. The archi-
tects developed “base-register offset addressing” to allow
12-bit addresses within a contiguous memory area; they
found that instruction sequences would remain within the
necessary memory area in a sufficiently large number of
cases to justify this approach.

In designing a system with upward and downward com-
patibility for both scientific and business customers, IBM was
attempting to use a single architecture to meet the needs of
an unprecedentedly large segment of its customers. To sup-
port this effort, large-scale efforts to develop compatible pe-
ripheral interfaces and software were necessary. System/360
was designed to be able to handle both decimal and binary
formatted information, with both variable-field length and
floating-point arithmetic capabilities. Since scientific users
tended to use Fortran and business users tended to use
Cobol, IBM designed and developed the PL/l programming
language in an attempt to provide a programming bridge
between the two communities.

It would be difficult to render judgment as to the extent to
which IBM was able to meet each of its individual goals for
System/360. Some features were not as successful as oth-
ers PL/l , for instance, did not supplant Fortran and Cobol.
But the bottom line is impressive: “In the six years from 1965
to 1971, IBM’s annual gross income increased 2.3 times
from $3.6 billion to $8.3 billion, and net earnings after taxes
increased 2.3 times, from $477 million to $1 .l billion. In
1982, the descendants of System/360 accounted for more
than half of IBM’s gross income.“’

Robert Papsdorf

’ This quote is from “System/360: A Retrospective View,” by 8. 0. Evans
[S]. IBM asked that the words “in the five years from January 1, 1966, until
January 1, 1971, .” in the original be changed to “In the six years from
1965to1971.....”

April 1987 Volume 30 Number 4 Communications of the ACM 293

Articles

architecture to IBM’s business problem of serving a
diverse set of customers and postulated the 360 line
of computers [3, 6, 71. The original plans called for a
range in performance of 20 to 1 over six different
designs, including the model 90/91, but it was
hoped that the performance spectrum would even-
tually be broader than that. 1 don’t think any of the
people that participated in the SPREAD Committee
were able to anticipate what the range would be
22 years later. Today the 3090-400 is over 2000 times
faster than the System/360 Model 30.

At the time of the SPREAD Committee, there was
a big debate about whether 360 compatibility should
be uni- or bidirectional. Everybody accepted the ob-
jective that any valid program that ran on a smaller
machine should also run on a larger one, but it
wasn’t obviously true that the reverse would also
hold. The initial commitment to do it both ways was
received by a majority of the IBM technical commu-
nity with a great deal of skepticism. In fact, only the

RICHARD CASE
Richard Case has been involved with many aspects of the
360-370 family during his career with IBM. He started as a
lurge systems logic designer in 1956, and worked on the
1410, the 7040, and the 7044 computers before becoming an
engineering manager on the early version of the 360 Model 65.
He went on to assume overall responsibility for language
compilers for the 360 operating system in 2962, and became
assistant manager for the OS/360 project in 1964. From
1966 to 1971, Case had overall division-level responsibility
for 370 architecture and system performance evaluation. He
was manager of the FS project from 1971 to 1974 and then
spent two years in the research division. He went on to
become involved in developing the 4300 line and later spent
a year on packaging technology for the 3081. Case then
became a development executive in the semiconductor divi-
sion until he went back to Endicott in 1982 to oversee the
announcement of the 4381 and VM version 4. In 1984 he
was promoted to his present job as IBM director of Techni-
cal Personnel Development.

appearance on the scene at about the same time of
microprogram technology provided a way o:f imple-
menting bidirectional compatibility.

Padegs We were in effect replacing several suc-
cessful lines: the 701-704-709-7090-7094, which in-
cluded also the 7040-7044; the 702-705-7080; the
650-7070-7074; and the 1401-1410-7010. We recog-
nized that a large part of the computer usage was
common to both scientific and commercial applica-
tions-for example, assembling, compiling, <and
operating-system functions. We had to convince the
advocates of the specialized lines that the nlsw archi-
tecture was going to meet their specific needs. Com-
promises had to be made. The edit instruction was
introduced as part of the decimal package to placate
those who felt that an earlier single-architecture
proposal was biased in favor of the scientific: users.
In the earlier System/360 models, the decimal and
floating-point instructions were made optional fea-
tures, with the expectation that they would only be
installed for the specialized applications. In the
370-XA these facilities are part of the basic iarchitec-
ture, and all current models offer them. During the
development of the 360, the key was making the
case that we had in fact succeeded in developing an
architecture that was good for both scientific and
commercial applications.

AS Did you ever add instructions to help justify
the machine that in retrospect were not really
necessary?
Case Yes. The edit instructions are one clear in-
stance. There are some other examples that are
debatable.

DG How many distinct interfaces were published
when the 360 was announced?
Padegs There were two model-independent inter-
faces specified for the 360 line. The first interface
was the instruction set; the second was the channel-
to-control-unit electrical specification and signaling
protocols. The latter was standardized so that a
single set of peripheral devices could be designed
to work across the entire range of models. T.he
channel-to-control-unit interface has some interest-
ing and important features: It allows I/O equipment
to be interchanged between systems; it also has
some effect on the software, since the commands
and the status indications are defined to be consis-
tent. This makes a compatible or common program-
ming system for I/O control possible. The channel-
to-control-unit interface was made public at the
same time as the 360 Principles of Operation..

294 Communications of the ACM April 1987 Volume 30 Number 4

AS What distinguishes a machine from an archi-
tecture?
Case A model is a realization and an implementa-
tion of an architecture, whereas a model is an elec-
trical and physical design, with a production cost, a
production schedule, and a price.

Padegs An architecture is a reflection of a concep-
tual model. A machine is the physical embodiment
of the architecture.

AS Did the fact that you originally announced a
spectrum of models help your architecture?
Padegs I would say it helped. Yes.

Case I would say it’s essential.

Pudegs [laughs] Then maybe it’s essential. At least
it’s essential initially, since it enforces the required
discipline. If you build a single machine, there is
always a temptation to optimize the architecture for
the machine you are building. If you are building
a collection of machines from low to high perfor-
mance, you are forced to take a broader view.

DG Did your ZO-to-1 performance range help your
architecture?
Padegs It did, since it forced us to look at the spe-
cific implementation issues for the different types of
machines. One example is the byte addressability of
most operands. This was motivated by the Model 30,
but also simplified programming on the larger
models.

DG If you had not had a low-end machine to
start, would the architecture of the 360 have been
different in some way?
Case I know one thing exactly that would have
been different if we had not had such a low-end
machine: We would never have had the packed dec-
imal formats in the machine. The only reason for
packed decimals was to allow the Model 30’s one-
byte-wide data path to process two digits at a crack
rather than one. Packed decimal formats made a
substantial enough difference in the decimal per-
formance of the Model 30 that we put them into the
architecture. Without a one-byte-wide machine, I
believe we would never have had the packed deci-
mal data format.

AS Has your goal of having a collection of com-
patible machines actually worked out in practice?
Case I think the record shows that we have suc-
cessfully developed an architecture that provides

ANDRIS PADEGS
Andris Padegs is manager of the department responsible for
the System/370 architecture at IBM, and has been involved
with the 360-370 architecture throughout its entire 23-year
lifetime. He joined IBM in 2958 to work on the Stretch
Project. In the early 196Os, he was responsb5le for defining
the System/360 I/O architecture, and he wrote the channel
part of the System/360 Principles of Operation. Later he
switched into the CPU architecture group, becoming its
manager in 1968. Since then he has worked on extensions to
System/370 architecture and on the development of other
computer structures. In 1975 he assumed his current posi-
tion as the manager of the central systems architecture de-
partment. He has received seven formal awards from IBM
for his contributions, including awards for outstanding in-
vention and invention achievement. Padegs has published
over 20 papers on computer architecture and organization
and holds four patents, including one on the System/360-
370 l/O interface.

compatibility across models. If you go out looking for
examples of an application program that runs on one
model and does not run on another model, you just
don’t find them. Professional architects might be
able to write programs that will run on a 145 and fail
on a 3033, but in practice people don’t run into that
problem.

DG How many 360/370 compatible machines and
different models have actually been manufactured
in the 22 years since the architecture was an-
nounced?
Padegs IBM has built around 50 different models.
As an order of magnitude, I would estimate that
100,000 machines have been manufactured.

AS Is the vector processing option included in the
architecture?
Padegs Yes. The vector feature was introduced
early in 1986, and the function is offered ;as an
option on the 3090. This architecture extension

April 1987 Volume 30 Number 4 Communicntions of the ACM 295

Articles

is intended for intensive engineering and scientific
applications that process arrays of data. It includes
171 new instructions and 16 special vector registers,
which on the 3090 contain 128 four-byte words
each. By comparison, it is interesting to note that the
original System/360 Principles of Operation con-
tained 143 instructions; for the 370-XA Principles of
Operation published in 1983, this number had
grown to 208. But the structure of the vector unit is
simpler than the count of 171 new instructions sug-
gests, because each arithmetic and logical operation
is available for several different operand types and
instruction formats.

Addram

r
Control

ST 1 a:- 1

MK-512K
128K.1024K

I 0.96 I &
2SbK- 1024K
512K.409bK

ructions 1 tDato
85

Dota ahtl

xii

I I

0.19s
“WV:’

- 65 tioml 0.06 Ml
:v 3 ml-&

IBM System/360 50 2:
Model 85 8: :‘- -.

Organization 65 /

The System/360 line in 1968 included seven models with
a performance range of 100 to 1.

DESCRIPTION OF THE ARCHITECTURE

DG What are the primary documents that de-
scribe the architecture of the 360 and 370 family?
Padegs The Principles of Operation is the key doc-
ument; so far there have been four major versions.
The 360 Principles of Operation was first published
in 1964, and the 370 Principles of Operation was first
published in 1970 [8]. The third version was an
offshoot for the smaller models called 370 virtual
storage extended [9]. The fourth was the extended
architecture (XA) Principles of Operation [lo], first
published in 1983. All large models we build today
have the XA architecture. Yet another separate doc-
ument [ll] describes the hardware protocol between
channels and control units.

AS How frequently do updates have to be made to
the Principles of Operation?
Case We issued 10 editions in the first eight years,
which was slightly more than 1 edition a year. We
do it less frequently now-we’re getting better.

AS Was a document ever written to describe why
certain things were done, as opposed to how they
were done?
Case There have been two attempts at that. The
first was in a paper by Amdahl, Blaauw, and Brooks
in the IBM Journal of Research and Development in
1964 [l]. The second was an article that An’dris and
I did in Communications of the ACM in 1978 to moti-
vate the 370 architecture [4].

Padegs There are a few more papers on su.ch topics
as channels, extended-precision floating point, vir-
tual machines, and the extended architecture. We
have probably published a total of a dozen papers on
the motivation of the architecture [see references].

DG We get the impression that the sum of IBM’s
experience with this architecture is embodied in
the Principles of Operation. Is this true?
Padegs No, some parts such as the specific:ations of
interpretive execution and vector operations are
actually published in separate manuals.

Case From a conceptual point of view, the archi-
tecture is described in a single document that’s pub-
lished in a number of volumes. The volumes are
consistent in style, presentation, and terminology.

AS The Principles of Operation is a fairly short
manual-370 pages. How can you describe the
architecture in so few pages?
Case It is because of the level of professionalism
that is dedicated to architecture. The architecture is
documented by the same people who are responsible
for its content. They are dedicated to makin.g the
description precise and succinct. The style was es-
tablished by Gerry Blaauw and Andris Padegs with
the publication of the first System/360 Principles of
Operation, and it has been continued ever since.

Padegs I would like to add that the page count is
low because it is a reference document with very
little tutorial material. It contains only what is es-
sential, and we try to avoid repetition. For example,
we have a certain pattern and structure that de-
scribes common attributes of instruction execution
once, so they do not need to be repeated in the
description of every instruction.

AS If you were going to design another computer
system, how would you document its architecture?
Padegs Well, we have discussed this a number of
times, and the question keeps coming up. In the
early 196Os, we worked with Falkoff and Iverson on
an APL description of the architecture [2]. We de-
cided against using APL in the official description of

296 Communications of the ACM April 1987 Volume 30 Number 4

the architecture, and I think that we will stick with
English in the future. There are a number of reasons
for doing so. First, a formal language such as APL
may be more precise, but what we really need is
flexibility. We would like to say precisely what we
mean when we want to make precise statements,
but we also need to say things that can’t be said very
well in a formal language. Second, we have a princi-
ple of having a single definition of the architecture.
If this single definition was in a formal language,
what would its audience be? There might be some
people who would appreciate the beauty of a formal
definition, but it is difficult to teach the whole com-
munity to use a formal language. Thus we provide
an English version, and if we permitted two defini-
tions, it’s possible that they would be inconsistent in
some way.

AS Can I write an operating system for a 360/370
computer solely from the Principles of Operation?
Case The manual does not propose to teach some-
body who doesn’t know anything about operating
systems how to do so. But, for someone who’s al-
ready written an operating system, or who knows
how, the manual would be sufficient.

DG Are there ever model-dependent features in
the architecture, and if so, are they public?
Case Yes, individual model descriptions are used to
describe public model-dependent features. There are
also certain model-dependent features for which the
definition is not public. For example, there are func-
tions built into almost all of our models that we
believe are there only for the purpose of enabling us
to do error detection and fault isolation.

AS Does the model-dependent information pertain
only to fault finding?
Case Well, that’s the biggest piece of it. We do have
some assists that we have implemented to help cer-
tain pieces of our operating systems go faster. In gen-
eral, the operating systems did not require these as-
sists to run. They just ran a little bit better or a little
bit faster. The assists are often experimental at-
tempts to improve performance on some processors.
As we learn more about the system, we introduce
general-purpose extensions. For example, we re-
placed the assists for VM by a more general-purpose

Articles

interpretive execution facility. All XA models that
we build now include the interpretive execution
facility.

THE ARCHITECTURAL PROCESS

DG How do you establish a customer requirement
for a new architectural feature?
Case In 1964 there was no identifiable customer
requirement for a line of compatible processors that
did commercial and scientific processing equally
well. At least you couldn’t have found that require-
ment by listening to customers. We had to dig
deeper, to establish who our customers were, what
their applications were, and how they would be
likely to react to an entirely new product. Asking
customers what they want is important, but its not
always possible to work on such a direct and literal
level.

AS How do you agree on a new architecture?
Padegs The answer to this question is different to-
day from what it was when we first designed the
360. In the early 1960s we started from scratch, and
we had to reason from first principles. We needed to
incorporate a complete set of functions that would
meet the needs of application programs and make it
possible to design an operating system. Today we
have a well-established architecture, programming
systems, and people who are using the architecture.
We look at what is missing for today’s applications,
and we consider how to extend the architecture. We
have considered extensions for both the problem
state and the supervisory state. In fact, in the late
1960s we did a user survey to gather suggestions for
possible extensions. We received 164 proposals for
new instructions, this at a time when we only had
143 instructions in the actual architecture. We nar-
rowed these 164 proposals down to 20 or 30 viable
instructions and finally included half a dozen of
them in the 370 architecture.

AS What types of analysis have you done of the
use of the 360/370 architecture, and how has this
analysis affected the implementation of specific
models?
Case When we started to design System/360, we
looked at extensive instructions traces from past ar-

If you build a single machine, there is always a temptation to optimize the architecture for
the machine you are building. Zf you are building a collection of machines from low to high
performance, you are forced to take a broader view.

April 1987 Volume 30 Number 4 Communications of the ACM 297

Articles

chitectures. When we were developing System/360,
though, so much was changing that we could not
rely exclusively on these traces. Therefore we also
coded up common instruction sequences that were
anywhere from about 4 to about 40 instructions
long. We called these kernels. In addition to coding
kernels with the basic instruction set, certain ker-
nels were also coded to take advantage of different
options. We then analyzed the performance of the
kernels. I should point out, though, that kernels also
have problems. It’s necessary to weight the impor-
tance of the different kernels, and kernels can be
written in many different ways, which can influence
the results. Finally, kernels can make you forget
about all the other instruction sequences that are
out there.

By now, IBM has extensive information on the
utilization of the 360 architecture. In fact, in some
cases the most sophisticated machine designers will
actually go out and collect their own data for some
specific purpose when it can’t be distilled from the
existing tapes.

Padegs It would seem that today we should be able
to measure precisely the value and cost of a new
instruction-the value in terms of the performance
improvement to some kernel, and the cost in terms
of the additional circuits and microwords. But it is
not that simple. The amount of effort and cost a
designer is willing to commit to the new function
depends on its anticipated use. The use, in turn,
depends, on performance. Thus we have to break
the circle. In some cases a number of “steady-state”
design points might be possible, depending on agree-
ments reached. However, for some instructions, such
as those for setting and testing bits, the potential for
usage is so pervasive that it is not possible to project
a meaningful usage frequency. For other instruc-
tions, such as those for operations on list structures,
the justification cannot be based on where the new
instructions would be used in current programs,
but rather on what new applications and program
structures the new instructions would make
feasible.

Case Early in the design of a machine, we use very
sophisticated machine simulators, along with work-
load or trace tapes, to determine the performance of
a new model to three or four significant digits. The
only reason we compute four digits is so we can
divide performance by cost figures in order to rank
features. This gives us a pretty good idea of what we
should include in the model.

DG Once a machine is designed, do you have sim-
ulators that allow you to verify that it properly

implements the architecture, even before the
machine is actually built?
Case Yes, absolutely. For example, on the 3090
someone added up all of the simulated running time
that we accumulated on the 3060 before the first
chips were cut, and it amounted to several seconds
of CPU time. It is now beginning to be possible to
use simulation to run noticeable amounts of real
time at the application level even before a machine
is built.

DG Once a machine is built, what sorts of pro-
grams do you run to validate its implementation of
the architecture?
Case The programs that we really depend on are
special programs that check out all the subtle and
obscure parts of the architecture specification. This
is in addition to the main-line operating systems,
together with a wide collection of application pro-
grams. We run such programs for hundreds if not
thousands of hours on a prototype of a new machine
before the machine is committed to replication.

DG Have you noticed the average instruction mix
shifting in any significant directions over tlhe last
20 years?
Padegs I cannot think of any specific changes. But
I can think of two factors that would affect the dis-
tribution. First of all, the instruction set and the
relative performance of instructions have ch.anged
over the years. We have increased the number of
instructions by almost 50 percent, and each of the
new instructions displaces some current usage. Ad-
ditionally, there is a gradual evolution in the choice
of instructions for a particular function. It is an itera-
tive process: Machines are designed to improve the
performance of the most common instructio:ns as de-
termined by the latest measurements, and the new
kernels are coded in view of the relative perfor-
mance of instructions on the latest models. Clearly,
changes in technology have had a major impact
here.

But, considering the mixes as indicated by ker-
nels, there is also a shift in the type of work the
kernels are reflecting. Many of our kernels now are
based on MVS usage of the machine, and these ker-
nels reflect the evolution of the operating system to
virtual storage, new program linkage convemions,
and multiprocessing. Thus you will see now the
use of compare and swap instead of some general-
purpose instructions for the management of locks.

Case My view is that the variations from workload
to workload are a lot larger than the changes from
year to year.

299 Communications of the ACM April 1987 Volume 30 Number 4

Articles

DG Could you describe the process that you use to
arrive at architectural decisions?
Padegs Let me answer your question by reviewing
the development of the XA architecture in the late
1970s. The XA architecture was developed by a cou-
ple of teams of people, each specializing in a certain
area, such as channels, virtual machines, and ad-
dressing. Each team consisted of half a dozen people
and included one or two architects, along with
machine designers, programmers, and planners. The
architects were in charge of the final conclusion and
would probably be considered the leaders. A design
would start with a consideration of what the pro-
grammers wanted and what the engineers could pro-
vide. A memo would then be written stating one
possibility for extending the architecture. The memo
would initially be only a few pages long, but over
time it would be revised to include more detail. Any
conflicts that arose were negotiated, and eventually
a group proposal resulted. Finally, any incompatibili-
ties between the proposals generated by different
teams were resolved.

Case It’s also necessary to put multiple iterations in
the scenario because design is not a linear process.
It’s either done in multiple iterations or at succeed-
ing levels of detail, until you finally converge on
something you’re going to do. It’s a collaborative
building process that uses estimates of cost, sched-
ules, performance, and so on.

Padegs Once each team evolved a proposal, it was
documented, polished, and negotiated to the point
where it was detailed and complete enough to suit
everybody. The proposal was then given to the ar-
chitecture board to go through a process called adop-
tion The architecture board includes representa-
tives from all affected machine and programming
groups. Once there were no objections to the pro-
posal from the architecture board (or when the
objections were such that we could override them),
we adopted the proposal.

AS Why have there been relatively few revisions
to the architecture over the 22 years?
Case There’s a pretty broad consensus that there’s
hardly anything more to be gained by tweaking the
core problem-state instructions. If you want to do
something to the problem-state instruction set, it
had better result in a big enough performance
change to be worth it-the vector facility is one
example where we thought that it would be worth
the trouble.

Padegs I certainly agree with Richard that there is
no point tweaking general-purpose instructions like

loads and stores. Too much software needs to be
changed to realize any performance benefits. But
new concepts and technologies may justify exten-
sions for specific applications, such as sorting. We
did this for XA. In this case a change in one software
product-the sort program-to make use of the new
machine capabilities led to significant performance
improvements in the customers’ applications. And
the supervisory-instruction set is always evolving.

AS Does a feature ever remain in the architecture
even though it may not be necessary?
Case That happens. Consider storing ahead into the
instruction stream. The way the architecture is de-
fined, that case must work properly. On a 3090 the
execution time penalty for storing ahead into the
instruction stream is very big if it happens, but the
hardware cost to detect a store ahead is relatively
small. Nobody cares about the time penalty because
it never happens. It’s almost to the point where it’s
cheaper to keep building the machines with a store-
ahead detection circuit than it is to wonder whether
or not it’s going to hurt somebody.

EVOLUTION OF THE ARCHITECTURE

DG Earlier you stated that when you defined the
architecture you purposefully left some things un-
defined. Did you ever make a mistake and leave
something undefined that should have been
defined?
Padegs The best examples of that are in the
floating-point instruction set. We initially defined
floating point such that overflow resulted in an un-
predictable value; models could vary as to what they
provided for the result value on overflow. It turned
out that many of our customers wanted to be able to
recover from overflows. The Model 65, unlike other
360 models, actually produced a useful result on
overflow. That seemed to be the right way of han-
dling overflow. In fact, people claimed that the other
models were wrong. We looked at the problem, and
we felt there was enough customer interest to
change all of the machines in the field. So we
changed the architecture to produce a useful result
on floating-point overflow. The result that we de-
fined could be used to scale the operands and to
proceed with the operation. A second problem in the
floating-point instruction set was remedied by add-
ing a guard digit during postnormalization shifting.
Without the guard digit, numbers that were very
close together could result in very large errors.

AS You changed all of the machines in the field?
Padegs Yes. This cost IBM a substantial amount of
money. The problem was caused by a lack of knowl-

April 1987 Volume 30 Number 4 Communications of the ACM 299

Articles

Evolution of System/360-370 Architecture

The System/360 architecture was introduced on April 7,
1964, with the announcement of the first six models. In the
next couple of years, new models at both ends of the
performance range introduced architectural changes to
meet particular cost and performance goals. The Model
20, although nominally part of the System/360 family, was
incompatible. It offered only 37 of 143 instructions, had 8
instead of 16 general registers, and differed in other ways.
At the high end of the performance range, Models 91,95,
and 195 introduced some deviations to accommodate
highly overlapped designs by delaying program interrup-
tions and permitting the result of the divide operation to be
off by one bit in the low-order bit position. Additionally,
Model 44 had a number of extensions for real-time ap-
plications. None of these special functions, however, was
continued in later models. The time-sharing functions in-
troduced on Model 67 were not continued in that form on
the subsequent models, but they were the precursors of
virtual storage on System/370.

In 1968, as part of the extended-precision floating-point
facility on the Model 85, the 128-bit floating-point format,
including instructions for rounding to the next smaller for-
mat, was introduced. Model 85 also removed the original
System/360 requirement that storage operands of un-
privileged instructions be aligned on boundaries equal to
a multiple of the operand length, and introduced on the
2880 Block Multiplexer Channel some of the I/O exten-
sions later made part of SystemI370.

When the next set of changes was introduced, with the
announcements of Models 155 and 165 in June 1970, the
architecture was renamed Systeml370. The main architec-
tural extensions were six general-purpose instructions
(move long, shift decimal, etc.), the time-of-day clock (with
a period of 143 years and resolution of 1 ps), and control
registers (to serve as an extension of the program status
word (PSW)). The USASCII-8 facility was deleted.

Virtual storage, the single item that most distinguishes
System/370, was introduced with the announcements of
Models 158 and 168 in August 1972. It includes dynamic
address translation and channel indirect data addressing.
A number of other extensions were introduced at this time:
the CPU timer, the clock comparator, program-event re-
cording (for software debugging), and the new PSW format
and interruption controls associated with extended-control
(EC) mode. Multiprocessing (CPU identification, program-
settable prefix, and the signal-processor instruction) and
the conditional-swapping and PSW-key-handling instruc-
tions were introduced in February 1973.

After termination of the future-systems project, in the
mid-1970s, extensions of the System/370 architecture
branched off into two new directions, as additional exten-
sions to the original System/370 architecture were also
being introduced. In 1978, with the shipment of the 3033,
System/370 was extended to improve MVS performance
and availability (low-address protection, the invalidate-
page-table instruction, etc.). In 1979, a facility was made
available on 3033 multiprocessing systems that permitted
switching channels between CPUs. In 1981, the virtual-
storage architecture on the 3033 and 308X machines was
enhanced by the installation of the dual-address-space
facility, which includes a 16-bit address-space number. A

total of 64K 16-Mbyte address spaces can be designated,
although at any one time addressability exists only to t’wo
spaces-the primary and the secondary. Instructions are
provided for establishing addressability, calling and return-
ing from programs either in the same or another address
space, and performing other functions. The main-storage
address at this time was extended to the equivalent of
26 bits (64 Mbytes) by the use of two unassigned bit posi-
tions in the page-table entry. In the channel, queueing of
I/O instructions was provided.

The architecture for the smaller models (the 4300 plro-
cessors) was developed to meet the needs of the DOS/
VSE operating system. The key distinction was the intro-
duction of an address-translation mechanism that uses a
single level of page tables, located in internal machine
storage, to replace the segment-table/page-table structure
of System/370 and to make I/O work with virtual ad-
dresses. Since in the VSE mode DOSNSE offers a sil?gle
virtual address space of 16 Mbytes, the architecture is
simplified by elimination of the multiple-address-space
capability of System/370. Facilities for multiprocessing
were also deleted. The Principles of Operation for the
VSE mode was published in January 1979 [9].

The architectural requirements for system facilities in
the high-end machines were set primarily by the MVS
operating system. The architecture was published in the
System/370 Extended Architecture (370-XA) Principles of
Operation in March 1983 [lo], and was first made available
on the 370-XA mode on the 308X machines. In addition to
the System/370 extensions previously made available on
the 3033 and the 308X machines, the main new architec-
tural features introduced at this time were 31-bit
addressing to permit addressing of up to 2 Gbytes of real
and virtual storage and the channel subsystem, which,
among other things, removed the channel-CPU affinity
and provided for dynamic selection of one among a multi-
plicity of paths to an I/O device. It also introduced tracing
and protection of virtual storage by pages instead of seg-
ments (segment protection was introduced in System/370
on the 308X), and deleted some functions that had belen
superseded: the original BC-mode of the PSW (note that
both modes had been available for two generations), the
interval timer (it had been maintained concurrently with the
new timing facilities for two generations), P-Kbyte pages
and protection blocks (370-XA introduced 4-Kbyte protec-
tion blocks), and 6CKbyte segments (only 4-Kbyte pages
and l-Mbyte segments are offered in 370-XA).

In January 1984 the 370-XA architecture was extended
by the introduction of the interpretive execution architec-
ture on the 308X. This extension serves to establish and
control virtual machines operating under a hypervisor.
Early in 1986 the vector facility, which includes 171 instruc-
tions and 16 special vector registers, was made available
on the 3090. This extension is intended for engineering
and scientific applications involving intensive computation.

Only the more visible and significant extensions are de-
scribed here; numerous other extensions, many of them
for improving recovery and serviceability, are not listed.
The “machine” column lists only the first models on which
the facility was offered.

Andris Padegs

300 Communications of the ACM April 1987 Volume 30 Number 4

Articles

YEAR ARCHITECTURE FACILITY

1964

1966

1966

1970

1972

1974

1976

1976

1960

1962

1964

Evolution of System/360-370 Architecture

SYSTEM ARCHITECTURE FACILITY

q-1 [Model-20 addressing
data acquisition

time-sharing

pipeline interruptions

-4

six general-purpose instructions L-a

virtual storage CPU timer

k extended-control mode Clock comparator

1 program-event recording

1 multiprocessing extensions

PSW-key-handling instructions

conditional-swapping instructions I

low-address protection

26-bit addressing

NEWMACHINES

30, 40, 50,...,75

20

44

67

91...

65

155,165

156,166

156MP,166MP

3033...

3033 MP

43xx

. \ A t onannet suosysrem L

1 \ \‘\rr page protection BkNNNNd
1 \ 12 1 tracing I
I I tcil--

April 1987 Volume 30 Number 4 Communications of the ACM 301

Articles

edge in defining the architecture in the first place. It
wasn’t the fault of the hardware designers; it was
inherent in the initial architectural specifications.

DG How much did it cost?
Padegs I don’t know that anybody ever added up
the figures.

Case I can give you an idea how much it cost: In
order to defend making the change and to get au-
thorization to do it, we had to make at least three
different trips to the corporate office to meet with
the corporate management board.

AS Was the floating-point fix the only architec-
tural change ever retrofitted to all the machines in
the field?
Case Well, there was one more, but it was not a
change that was visible to the programmer. In the
original design of the channel-to-control-unit inter-
face, transmission lines were daisy chained through
controllers, and the lines were terminated to a non-
ground voltage level at the last controller. If you
happened to turn the power off at the last control
unit in the chain, the whole channel wouldn’t work.
In order to fix this problem, we went back and over
an la-month period retrofitted every control unit
and channel that we had shipped. It was a big deal.

DG How else has your architecture changed over
time?
Case Let me distinguish between architectural
changes and extensions. An architectural change
will change the way current programs operate. The
floating-point revisions were architectural changes.
Extensions are new functions that are compatible
with existing programs. Generally speaking, existing
programs will not be able to take advantage of an
extension, unless it is something like a cache mem-
ory. But cache memories are really an implementa-
tion technique, and so they are not visible in the
architecture; in other words, they have no effect on
software.

Most of the architectural extensions that we have
made have been to supervisory-state facilities that
are only used by the operating system. For example,
we introduced a new format for the program status
word in 370, and for XA we have a new set of I/O
instructions. In this way we can isolate problem-
state programs from the evolution of the architec-
ture. In addition, when we add a new facility to
replace a current one, we keep both in for a long
time. This allows user sites to convert to the new
architecture over a period of years without changing

their hardware. With the exception of the floating-
point changes, we have never changed the a.rchitec-
ture without at least fixing it so that all the told
programs could still be run.

Padegs I think it is important to clarify precisely
what we mean when we say that extensions are
compatible with existing programs. Extensions are
only compatible with valid programs. A valid pro-
gram is one that doesn’t intentionally-or u:ninten-
tionally-cause any error indications. Error indica-

We built the whole original 360 line with
USASCZI-8 capability, and to the best of
my knowledge, nobody ever used it.

tions can result from issuing instructions with an
invalid op-code, or changing a set of bytes to an
invalid state. The idea is that valid programs do not
use the codes and formats that we may need for
extending the architecture, such as unassigned
op-codes.

DG You mentioned that the only programmer-
visible change that has been made in the 360 archi-
tecture over time was the floating-point change.
What about the change that eliminated USASCII-8
mode?
Case The original 360s had a bit in the program
status word that changed the representation of digits
and signs. This mode was in anticipation of the
ASCII standard that had just been published..
USASCII-8 capability was removed in the 370 be-
cause we were unable at the time to find a program
that used the facility. In fact, we built the whole
original 360 line with that USASCII-8 capability, and
to the best of my knowledge, nobody ever used it.
Thus, there were no old programs to worry about in
this case.

AS Amazing.
Padegs Although the USASCII-8 mode was in-
tended for use by unprivileged programs, thle archi-
tecture specified that the machine had to be in
supervisory state to turn on USASCII-8 mode.
However, none of our operating systems were
programmed to turn on the bit. That was one assur-
ance of how unlikely it was that anybody could be
using the USASCII-8 mode.

302 Communications of the ACM April 1987 Volume 30 Number 4

Articles

Now, to be completely precise and honest techni-
cally, a few other minor changes were introduced
into 370 that should be considered incompatible,
such as the choice of the op-code for the new halt-
device instruction, the effect of I/O command retry,
and the change in the prefetching of channel control
words by the channel. All these changes are high-
lighted in the Principles of Operation.

MULTIPROCESSING

DC To what extent is multiprocessing designed
into the 360/370 architecture?
Padegs I assume when you say multiprocessing
you mean where there are two or more CPUs shar-
ing main storage. The System/370 architecture of-
fers this type of multiprocessing, and we found that
it has two types of architectural implications. The
first has to do with new functions, where one CPU
tells another to start or stop or do something. The
second is much more subtle and pervasive and
has to do with the sequencing of events in a multi-
processor.

I can tell you a story about instruction retry to
give you an idea of how subtle these sequencing
implications are. Our hardware designers included
a facility in some of our machines that would retry
instructions that got recoverable hardware errors.
Initially the designers felt that instruction retry was
transparent to the architecture so that it wouldn’t
concern architects. So did we until we realized what
could happen. The problem was that a second CPU
could observe all the intermediate values placed into
storage by the CPU that is doing the retry. It could
observe, for example, a field being changed to some
new value (the erroneous result), then back to the
original result as stored by the retry procedure, and
finally to the correct new value.

Case The test we used was, Can you show me a
difference between a multiprocessor system with re-
try and one without? And then, if you can show me
a difference, can you prove to me that any program
could ever detect that difference? At first we
weren’t sure that a program could ever detect retry
by another CPU, then we weren’t sure that a pro-
gram could ever care, and then finally somebody
said, “Hey, that’s wait-post!” Wait-post is the stan-
dard queue management discipline in MVS, and it
could tell the difference. After some analysis you
conclude that, if you’re going to get coherence be-
tween two different CPUs, the first thing you’ve got
to do is establish some rules about what just one
CPU can do. If you don’t have any rules about what

one CPU can do, you can’t get the link between
them.

Padegs We were of course really forced to think
through the whole thing. There are certain rules
that will make operations predictable. We added
these rules to the architecture. They are not really
part of multiprocessing, but they are important for
multiprocessing. For example, certain instructions
can only update storage once. The rules also define
the permissible orders for fetches and stores.

DG So you define some instructions to be atomic
operations and others to be nonatomic?
Padegs Well, no, there is a difference between
atomic instructions and atomic stores. An atomic
store of an a-byte field means that all a bytes appear
to be placed in storage concurrently; the field cannot
be stored one byte at a time, where another CPU
could observe only part of the field having been
changed. Also, the effects of retry must not be ob-
servable for an atomic store. But that doesn’t mean
that the whole instruction involving an atomic store
must be atomic. Instructions are generally not
atomic, and another CPU can observe distinct
fetches and stores taking place. That of course is the
whole reason why we need compare and swap.
Compare and swap is atomic, and so is test and set.

AS How do your rules help the programmer deal
with the complexity of multiprocessing?
Case In both the single processor and the multipro-
cessor case, we have simplified the architecture at
the expense of a potentially complex implementa-
tion. For example, in the multiprocessor case every-
thing has got to work as though you had a bunch of
slow serial CPUs actually executing out of a memory
without any pipelining and caches. We preserve that
simple image. There are some exceptions, as when
one processor stores into the instruction stream of
another processor, but that is the basic idea.

DG That certainly must complicate the imple-
mentation of high-performance pipeline machines
like the 3090. Would these machines be less com-
plex if you relaxed your rules?
Padegs To some degree, oh yes.

AS Does the architecture now specify that all of
the processors in a multiprocessor system must
have equal access to I/O devices?
Padegs Part of the XA structure is that each CPU
connects with all channels.

April 1987 Volume 30 Number 4 Communications of the ACM 303

Articles

DG Why did you provide compare and swap in
your architecture when you already had test and
set?
Case Test and set is sufficient for implementing
a basic semaphore, but for operations like updating
a queue, test and set has to be used in a protected
region., which is a portion of code that cannot be
interrupted. Compare and swap can perform such
operations in a single instruction. Because compare
and swap is atomic, it does not have to be used in a
protected region. Thus for an important set of appli-
cations compare and swap is simpler and has higher
performance than test and set.

COMPARE AND SWAP
Instruction:

OP f’b k3 BP D2

OpercYtion:
0 16 31

Reg.1
$ Compare 1 Replace if Unequal

Skrage Operan >
T

Replace if Equal

Reg.3

The “Compare and Swap” instruction was added to the
370/XA architecture in 1973 to support multiprocessing.

AS What are the specific interprocessor communi-
cation instructions in the 370 architecture, and
when were they introduced?
Padegs There is one instruction called signal CPU,
which was added in 1973. Signal CPU allows one
CPU to control and communicate with another. In
the 360 architecture, we had a general-purpose in-
struction for signaling that was used in the Model 65
and 67 multiprocessors.

DG How do you prokide cache coherence between
CPUs in a multiprocessor?
Case Caches use cross interrogation to find out if
other caches also hold the same data. If cross inter-
rogation never finds a conflict, execution is at the
same speed as it would be without cross interroga-
tion. But there is a sizable hardware cost in the
cross-interrogation system.

DG Just to play devil’s advocate, I’m going to as-
sert that the only reason you can make these ma-

chines work is that you’ve been at it for 20 years.
The machines are sufficiently complicated now
that you would have a very difficult time making
them work properly without all your experience.
Case Possible. Possible.

Padegs Well, I admit there are things that we
would do differently if we were starting from
scratch. Would we have provided the instrulctions
for serializing, synchronizing, and making the cache
nontransparent? That’s difficult to answer. Maybe if
we were given today’s technology without any prec-
edents, we might have allowed private segments
that would not provide cache coherence between
CPUs. That would certainly have reduced cache
cross-interrogation traffic between CPUs.

Case I think I would build hardware that could
detect whether a segment was read only or write
only just from the actions applied to the segment.
This would eliminate the need for people to declare
segment types.

MAINTAINING THE SYSTEM/360
ARCHITECTURE

DG Has the 360 outlasted its original projected
lifetime?
Case There was no official forecast that I know of
about the lifetime of the architecture, but there was
an official forecast about the lifetime of the initial
models. Some of the people who were there--Fred
Brooks maybe-will tell you they hoped the archi-
tecture would last for 15 years because previous ar-
chitectures had lasted 5 years.

AS Why has it lasted for 22 years?
Padegs I would say that there are three major
forces that have contributed to its success. F:irst of
all, the basic structure was sound. We’ve changed
the I/O architecture completely, and we’ve changed
functions for the control program and added new
instructions, but all of these additions and modifica-
tions are based on the same basic structure fior in-
structions, operands, program status words, and so
on, that we developed in the early 1960s. These
structures are probably not optimum, but they are
sound. That’s number one.

The second factor is that we were able to build on
the basic structure because it was so rigorously and
precisely defined.

The third factor is that we have a department in
the company with responsibility for defining and
maintaining the architecture. Maintenance is just as
important as the initial definition. Initially, people
worry about how to define an architecture. Once an

304 Communicntions of the ACM April 1987 Volume 30 Number 4

Articles

The System/360 Model
40 was introduced on
April 7, 1964, and had a
cycle time of 625 ns and
256 kbytes of main
memory.

architecture is defined, in many cases the architec-
tural function fades out. In our case I think that the
architecture department has actually grown since
the original definition of the 360 in the early 1960s.
Architecture needs continuity.

AS Do computer architects have a relatively large
amount of latitude in the design of something that
will work?
Case I think so. All of the reasonable designs that
have been developed have been a lot closer to each
other than people expected. The thing that most
distinguishes different instruction sets in computer
architecture is their addressing capabilities. The rea-
son we needed System/360 in the early 1960s was
for its H-bit address space. That was enough for a
decade, and then we had to expand to 31 bits. We
had laid the groundwork for doing that back in 1964.
At present we are using up one bit of address space
every 30 months. That means we are going to even-
tually reach the point where a 31-bit address space
is insufficient. For a while we’ll be able to get by
with a collection of patches and switches, but they
will not last forever. Probably by the time we need
34 bits or so there will have to be another major
upheaval.

AS I presume that XA came out just in the nick of
time in 1983.
Case It was late. Some customers could have taken
advantage of it earlier.

AS Okay, so in several years you will run out
of 31 hits. You have a couple more bits you said
you could handle by ad hoc means. So you’ve got
until 1995, and then your upheaval will occur.
Case It’s plus or minus a few years, at today’s rates.
Now whether today’s rates continue, or whether
something else will happen, I don’t know. But ad-
dressing is the most important driving force in
instruction-set architecture.

DG Have architectural deviations been allowed,
to improve performance in a particular model?
Padegs Performance normally is not the motivation
for a deviation from architecture. A deviation nor-
mally is allowed after the fact. Furthermore, we do
not grant deviations for the basic part of the archi-
tecture that would affect the normal operation of a
program. For example, in the past we have allowed
a deviation when the test light on the panel doesn’t
come on at the right time. A deviation normally is
requested to avoid the cost of correcting the design.

DG Was the imprecise interrupt in the Model 91
an architectural deviation?
Padegs I guess you would have to call it a devia-
tion, yes. I look at deviations as minor things that
don’t affect the basic functioning of a machine. Nor-
mally there are very few deviations in a machine,
perhaps a couple or none at all. Imprecise interrupts
in the Model 61 were a design decision. It was really
almost like adding a new function to the machine.

April 1987 Volume 30 Number 4 Communications of the ACM 305

Articles

We told the users of that machine that in exchange
for increased performance they could not recover
from floating-point errors.

Case Imprecise interrupts did not survive in the
successor to the Model 91, by the way.

AS So-called reduced-instruction-set computers
implement a small set of instructions that can be
executed in a single cycle. What influence do the
arguments for reduced-instruction-set computers
have on your architecture today?
Padegs Let me answer with an example. At one
point we considered adding an instruction to our
architecture that would, in one operation, load the
general registers and change the PSW [program sta-
tus word]. This is a very common operation in dis-
patching. The existing method used two instruc-
tions, one to load the registers and another to change
the PSW. We discovered that the proposed single
instruction would be slower than executing the two
existing instructions. So we didn’t add that instruc-
tion. We’ve always had at least an implicit reduced-
instruction-set philosophy.

DG Doesn’t the relative complexity of your in-
struction set create a need for more hardware to
implement your core instructions in a single cycle?
Case Yes, but the cost is not that great. I believe
you could build a high-density single-chip version of
a ST&like reduced-instruction-set computer so that
the core of the 370 instructions would be imple-
mented in hardware on the chip in about one cycle
per instruction. The rest of the instructions ,would be
simulated using the core instructions out of a control
store. Hardware complexity could be within a factor
of two at the chip level. There are good arguments
for reduced-instruction set computers such ias the
801 [14]. The 801's compiler ideas were good, along
with the idea of having separate data and instruction
caches, and the trade-offs in the design of the hard-
ware protection facilities were good. But in the end
the total difference between conventional designs
like 370 and reduced-instruction-set computers is
not huge. In today’s technologies there are only a
few chips at the CPU level for many implementa-
tions, and both RISC and non-RISC designs use the
same number of memory chips and the same num-
ber of I/O chips.

Case In fact, in the fastest implementations of the AS When John Cocke gave his talk at CMU on
architecture there is a whole flock of instructions reduced-instruction-set technology, one of his argu-
that execute in one cycle, and these single-cycle in- ments was that it’s desirable not only to execute an
structions are the bulk of the instructions executed. instruction per cycle, but also to minimize the

The 3090 Model 400,
which runs both the 370
and the 370/XA architec-
tures, was introduced
on February 12.1985,
and has a cycle time
of 18.5 ns, with up to
128 Mbytes of main stor-
age and 512 Mbytes of
expanded storage. The
newest 370-370/XA ma-
chine, the Model 600E,
which looks essentially
like the 3090 Model 400,
was introduced on Janu-
ary 6, 1987, and has a
cycle time of 17.2 ns,
with up to 258 Mbytes
of main memory and
1 Gbyte of expanded
storage.

306 Commmications of the ACM April 1987 Volume 30 Number 4

Articles

length of a cycle. We have an existence proof that
it’s possible to build a high-performance 376XA
architecture with an average number of cycles per
instruction of close to one. The remaining question
is, how much have you added to the length of a
cycle to do that?
Case That’s a harder one to answer. For example,
one experimental FET 370 that we have designed in
a reduced-instruction-set style has many more gate
delays per cycle than a 3090 does. There are a lot of
trade-offs. Cocke’s 801 design minimizes the number
of gate delays per cycle relative to a 370-XA imple-
mentation. The question is how much.

DG There is at least one feature in your architec-
ture that is fairly complicated, which is the pro-
gram event recording facility. How was that
justified?
Case The program event recording facility provides
the ability to build a general-purpose debugging sub-
system that operates on a wide variety of other pro-
grams. That feature has been justified more times
than any other single feature in the architecture. It
has been a candidate for removal every time there
was a major change in the architecture because of
its complexity. But then we look at the savings in
the field expense for basic software maintenance
that it provides and change our minds. It allows our
field service representatives to identify a failing
module with an efficiency that they otherwise could
not achieve.

AS Is the program event recording facility a tough
thing to implement in software?
Case No, not at all. All you’ve got to do is put a
17-instruction interpretive loop around every in-
struction. Then it’s easy to implement. But of course
that is not practical. John Cocke would argue that
you only need a program event recording facility for
modules written in assembly language, that the pro-
gram event recording facility is superfluous for mod-
ules written in higher level languages.

FUTURE DIRECTIONS

DG How might you try to design a new architec-
ture today?
Case When we did the 360, we had to assume that
a significant fraction of the programming was going
to be in assembly language. Today you might begin
by dispensing with a rational human-engineered in-
terface at the assembly-language instruction level.

AS What sorts of radical changes can you foresee
that would cause the 360 architecture to be sup-
planted by a new architecture?

Case That’s hard to say. If there is ever a break-
through in harnessing thousands of micros into an
effective array for a wide-enough spectrum of big
jobs, then it might be time to rethink the major
computer product lines. In the meantime, though,
I’m underwhelmed by most of the suggestions for
such machines that have been made in the literature
and by entrepreneurs. Not that a lot of what they’re
saying is not worthwhile, but the scope of applica-
tions is limited in each case. I think that if IBM ever
gets convinced that its future objectives can’t be met
with 360/370 machines and if it believes that there
might be another approach that will meet those ob-
jectives, then we’ll go try.

REFERENCES
1. Amdahl. CM., Blaauw, GA., and Brooks, F.P. Architecture of the

IBM System/360. IBM \. Res. Dev. 8, 2 (Apr. 1964), 87-101.
2. Amdahl, G.M.. et al. Special Issue: The structure of SYSTEM/360.

IBM Sysf. b 3. 2 (19&l), 119-263.
3. Aron, J.D., et al. Discussion of the SPREAD report, June 23. 1982.

Ann. Hisr. Comput. 5, 1 (Jan. 1983), 27-44.
4. Case, R.P., and Padegs. A. Architecture of the IBM System/370.

Commun. ACM 21, 1 (Jan. 1978), 73-96.
5. Evans, B.O. System/360: A retrospective view. Ann. Hist. Comput. 8,

2 (Apr. 1986),155-179.
6. Haanstra, J.W., et al. Processor products-Final report of the

SPREAD task group. Ann. Hist. Comput. 5, 1 (Jan. 1983), 4-26.
7. Hellerman, H. The SPREAD discussion continued. Ann. Hist.

Comput. 6.2 (Apr. 1984), 144-151.
8. IBM. IBM System/370 Principles of Operation. Order no. GA22-

7000, available through IBM branch offices.
9. IBM. IBM 4300 Processors Principles of Operation for ECPS: VSE

mode. Order no. GA22-7070, available through IBM branch offices.
10. IBM. IBM System/370 Extended Architecture Principles of Opera-

tion. Order no. SA22-7085, available through IBM branch offices.
11. IBM. IBM System/360 and System/370 l/O interface: Channel to

control unit, original equipment manufacturer’s information. Order
no. GA22-6974, available through IBM branch offices.

12. McHenry. W.K., and Goodman, SE. MIS in Soviet industrial enter-
prises: The limits of reform from above. Commun. ACM 29, 11 (Nov.
1986),3034-1043.

13. Padegs. A. System/360 and beyond. IBM J Res. Dev. 25,5 (Sept.
1981), 377-390.

14. Radin, G. The 801 Minicomputer. Symposium on Architectural Support
for Programming Languages and Operating Systems, SlGPLAN Not. IO, 2
(Mar. 1982). 39-47.

CR Categories and Subject Descriptors: B.0 [Hardware]: General:
Cl.1]Processor Architectures]: Single Data Stream Architectures:
Cl.2 [Processor Architectures]: Multiple Data Stream Architectures
(Multiprocessors): C.5.1 [Computer System Implementation]: Large and
Medium (“Mainframe”] Computers: K.l [Computing Milieux]: The Com-
puter Industry: K.2 [Computing Milieux]: History of Computing: K.7.2
[The Computing Profession]: Organizations

General Terms: Design, Documentation, Performance
Additional Key Words and Phrases: IBM, SPREAD, System/360,

System/370

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

April 1987 Volume 30 Number.4 Communications of the ACM 307

