
Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

http://ubiquity.acm.org	 1	 ©2017	Association	for	Computing	Machinery	

Is	Quantum	Computing	for	Real?	
	

An	Interview	with	Catherine	McGeoch	of	D-Wave	Systems	

by	Walter	Tichy	

	
Editor’s Introduction	

In this interview, computer scientist Catherine McGeoch demystifies quantum computing and
introduces us to a new world of computational thinking.

	

	
	

	

	

	

	

	

	

	

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

http://ubiquity.acm.org	 2	 ©2017	Association	for	Computing	Machinery	

Is	Quantum	Computing	for	Real?	
	

An	Interview	with	Catherine	McGeoch	of	D-Wave	Systems	

by	Walter	Tichy	

	
Imagine	the	world's	fastest	computer	requiring	a	totally	new	way	of	thinking:	no	sequencing,	no	
conditions,	no	loops—indeed,	no	instructions.	The	machine	is	not	a	set	of	logic	boxes	controlled	
by	 clock;	 it	 is	 instead	 a	 large	 number	 of	 cells	 each	 containing	 a	 quantum	 bit	 or	 "qubit,"	
connected	with	each	other	through	weighted	links.	Changing	just	one	bit	triggers	a	cascade	of	
changes	 in	all	 the	others.	A	qubit	 is	no	ordinary	bit	because	 it	uses	 the	quantum	principle	of	
superposition	to	store	the	two	bit-values	simultaneously.	A	 link	 is	no	ordinary	wire	because	it	
uses	the	quantum	principle	of	entanglement	to	avoid	relying	on	electric	currents.	In	a	machine	
with	 2,000	 qubits,	 all	 22000possible	 combinations	 of	 bit-values	 are	 represented	 at	 the	 same	
time.	When	cooled	to	near	absolute	zero,	and	once	a	problem	instance	has	been	 loaded	 into	
the	qubits,	the	machine	takes	only	a	few	microseconds	to	settle	into	a	pattern	that	encodes	the	
problem’s	solution.	This,	in	short,	is	the	computational	model	of	quantum	annealing	and	a	way	
to	build	practical	quantum	computers.	Quantum	annealing	might	 replace	 the	Turing	and	Von	
Neumann	models	we’re	so	used	to	and	usher	in	a	new	kind	of	computational	thinking.	

That	 quantum	effects	 such	 as	 superposition	 and	 entanglement	 could	 be	 used	 to	 build	 vastly	
more	powerful	computers	was	first	suggested	in	the	early	1980s	courtesy	of	Richard	Feynman	
of	CalTech	and	David	Deutsch	of	the	University	of	Oxford.	In	1994,	Peter	Shor,	then	at	AT&T	Bell	
Labs,	 showed	 how	 a	 quantum	 computer	 could	 be	 used	 to	 factor	 large	 numbers.	 The	 first	
quantum	 bits	 made	 of	 atoms,	 molecules,	 or	 photons	 appeared	 in	 the	 late	 1990s	 and	 early	
2000s.	Despite	 the	progress,	physicists	 still	 struggle	 to	construct	more	 than	a	 few	qubits	 that	
can	remain	in	superposition	and	entanglement	for	any	useful	time	span.	

Then	 in	 1999,	 the	 Canadian	 company	 D-Wave	 Systems	 embarked	 on	 a	 mission	 to	 make	
quantum	 computing	 practical.	 Over	 the	 years,	 the	 company	 has	 been	 fabricating	 quantum	
computers	with	a	 steadily	doubling	number	of	qubits.	 In	 January	2017,	D-Wave	announced	a	
machine	with	an	unprecedented	2,000	qubits.	With	this	many	bits,	 realistic	problems	can	 	be	
tackled.	

	

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

http://ubiquity.acm.org	 3	 ©2017	Association	for	Computing	Machinery	

In	 this	 interview,	computer	 scientist	Catherine	McGeoch,	who	 left	Amherst	College	 to	 join	D-
Wave	 Systems	 and	 specializes	 in	 NP-hard	 problems,	 will	 demystify	 quantum	 computing	 and	
introduce	us	to	a	new	world	of	computational	thinking.	

Walter	Tichy:	Whenever	a	quantum	computer	in	a	research	lab	goes	from,	say,	8	qubits	to	10,	
this	 is	big	news.	Now	D-Wave	has	announced	a	new	quantum	computer,	 going	 from	1,000	
qubits	to	2,000!	What	is	going	on	here?	Are	we	nearing	practical	quantum	computing?	

Catherine	McGeoch:	Most	of	those	research	labs	are	trying	to	build	quantum	computers	that	
belong	 to	 the	 quantum	 gate	model	 of	 computation	 (QGM).	 D-Wave	 implements	 a	 family	 of	
quantum	annealing	algorithms	in	hardware,	which	is	the	real-world	counterpart	of	a	different	
abstract	model	called	adiabatic	quantum	computation	(AQC)	[1].		

The	engineering	challenges	that	arise	when	trying	to	build	working	quantum	computers	under	
these	two	models	of	computation	are	considerably	different.	For	QGM,	it	 is	a	major	technical	
challenge	to	minimize	decoherence,	which	wrecks	the	probability	of	a	successful	computation	
(all	 quantum	 computation	 is	 probabilistic).	 That's	 why	 announcement	 of,	 say,	 a	 working	 10-
qubit	 device	 makes	 headlines—in	 the	 QG	 model	 it	 is	 a	 real	 achievement	 to	 manage	
decoherence	at	that	scale.					

The	 AQC	model	 is	 more	 robust	 against	 decoherence	 (although	 coherence	 is	 still	 necessary).	
Annealing-based	quantum	computing	has	its	own	set	of	engineering	challenges,	but	scaling	up	
in	qubit	size	while	maintaining	adequate	levels	of	coherence	hasn't	really	been	on	the	top	ten	
list.		

As	to	whether	we	are	nearing	practical	quantum	computing,	well,	yes,	that's	the	idea.		

	
WT:	Can	you	tell	us	which	 labs	or	companies	have	bought	D-Wave	computing	systems,	and	
what	they	are	doing	with	them?	

CM:	Lockheed	Martin	has	owned	a	D-Wave	system	since	2011,	which	it	shares	with	USC.	Their	
original	D-Wave	One	(128	qubits)	was	upgraded	to	a	D-Wave	Two	(500	qubits),	and	then	a	D-
Wave	 2X	 (1,000	 qubits).	 Google,	 NASA,	 and	 Universities	 Space	 Research	 Association	 (USRA)	
have	been	sharing	a	D-Wave	system	since	2013.	Their	D-Wave	Two	was	later	upgraded	to	a	D-
Wave	2X,	and	they	recently	purchased	an	upgrade	to	the	D-Wave	2000Q	(2,000	qubits)	system.	
Los	 Alamos	 National	 Laboratory	 acquired	 a	 D-Wave	 2X	 system	 in	 2015.	 Temporal	 Defense	
Systems	purchased	a	D-Wave	2000Q	system	in	early	2017.		

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

http://ubiquity.acm.org	 4	 ©2017	Association	for	Computing	Machinery	

There	are	also	a	number	of	customers	who	buy	blocks	of	quantum	computation	time	over	the	
cloud,	a	service	that	has	been	available	since	2010.		

The	 best	 way	 to	 find	 out	 what	 they	 are	 doing	 with	 quantum	 computation	 is	 to	 visit	 their	
websites	and	look	at	the	papers	that	are	being	published.		

	

WT:	I	just	noticed	the	first	car	company,	Volkswagen,	has	announced	a	collaboration	with	D-
Wave	Systems	to	optimize	traffic	flow.	Obviously,	a	D-Wave	computer	is	not	meant	for	your	
Hello	World	program	or	for	surfing	the	Internet.	 Instead,	quantum	computers	are	supposed	
to	 tackle	 really	 tough	 problems.	 Before	 we	 go	 into	 concepts	 such	 as	 superposition	 and	
entanglement,	which	problems	might	readers	understand	that	have	been	solved	on	D-Wave	
systems?		

CM:	 The	 quantum	 processing	 unit	 (QPU)	 is	 designed	 to	 find	 good	 solutions	 to	 NP-hard	
optimization	problems,	which	are	defined	 in	 terms	of	certain	cost	 functions	 to	be	minimized.	
These	 problems	 are	 found,	 for	 example,	 in	 operations	 research,	 artificial	 intelligence,	 and	
especially	machine	learning	applications,	which	require	large	samples	of	solutions	in	their	inner	
loop	computations.	

In	principle,	anything	 in	NP—the	 famous	class	 containing	hundreds	of	 challenging	application	
problems—can	be	formulated	for	solution	on	the	QPU.	Of	course,	some	inputs	are	too	big	to	be	
solved	directly	on	the	QPU,	in	which	case	problem	decomposition	or	a	hybrid	classical/quantum	
query	approach	may	be	used.		

Note	there	are	no	theoretical	guarantees	available	on	how	close	to	optimal	the	solution	will	be,	
or	 on	 how	 much	 time	 it	 would	 take	 to	 find	 an	 optimal	 solution.	 In	 this	 sense,	 quantum	
annealing	is	comparable	to	a	classical	optimization	heuristic	like	simulated	annealing.		

The	problems	 that	have	been	actually	 implemented	on	D-Wave	 systems	are	 too	many	 to	 list	
here.	Three	recent	papers	describe	problems	in	constraint	satisfaction	for	circuit	fault	analysis	
[2],	multiple	query	optimization	[3]	in	databases,	and	constructing	SAT	filters	(similar	to	Bloom	
filters)	[4].		

	

WT:	Can	it	crack	codes,	i.e.,	factor	large	numbers?		

CM:	 It	can	factor,	but	it	does	not	use	Shor's	algorithm,	it	uses	a	different	quantum	annealing-
based	algorithm	[5].	At	current	QPU	sizes	 (which	can	handle	numbers	of	 size	around	10	bits)	

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

http://ubiquity.acm.org	 5	 ©2017	Association	for	Computing	Machinery	

classical	methods	 can	beat	 certain	 lower-bound	 times	 imposed	by	 the	QPU	control	 software.	
There	are	no	theorems	known	about	the	efficiency	of	this	algorithm,	and	we	don’t	know	if	the	
quantum	algorithm	will	be	faster	than	classical	methods	when	qubit	counts	grow	large	enough	
to	solve	more	challenging	inputs.		

		

WT:	What	does	the	programming	language	look	like?	

CM:	 The	 QPU	 can	 compute	 any	 logic	 circuit,	 which	 technically	 means	 that	 is	 has	 the	 same	
capabilities	as	a	classical	ALU.	But	there	isn't	really	a	machine-level	instruction	set,	there	is	just	
one	(parameterized)	instruction	that	basically	says	“solve	it	via	quantum	annealing.”			

Instead	of	figuring	out	how	to	write	a	program	to	solve	your	favorite	problem,	the	intellectual	
challenge	 is	 how	 to	 formulate	 your	 problem	 so	 that	 it	 can	 be	 solved	 by	 this	 instruction.	 For	
example,	the	factoring	problem	is	solved	by	formulating	it	as	a	multiplication	circuit	with	inputs	
X,	Y	and	output	N,	together	with	a	cost	function	that	is	minimized	when	𝑁 = 𝑋 ⋅ 𝑌.	You	set	N	to	
the	number	to	be	factored,	and	then	ask	the	QPU	to	find	X	and	Y	to	minimize	the	cost	function.		

This	type	of	problem	translation	is	a	well-understood	concept	in	NP-completeness	theory,	and	
cookbook	 translation	methods	are	known	for	 the	optimization	problems	we	are	 interested	 in	
solving.	There	is	also	a	rapidly	growing	body	of	software	tools	available	(C,	Python,	Fortran)	to	
help	the	user	formulate	problems.		

		

WT:	How	fast	is	it?	

CM:	 Current-generation	 D-Wave	 systems	 can	 solve	 a	 2000-variable	 problem	 with	 an	 anneal	
time	 of	 five	microseconds.	 This	 is	 one	 of	 the	minimum	 time	 bounds	 imposed	 by	 the	 control	
system:		On	some	inputs	the	quantum	algorithm	could	probably	work	fine	with	anneal	times	in	
tens	of	nanoseconds,	and	on	other	inputs	longer	anneal	times	give	better	results.	The	minimum	
elapsed	 time,	 including	overhead	 for	setup	and	readout	 to	move	the	problem	on	and	off	 the	
QPU,	is	about	10	milliseconds.	So	the	quantum	part	of	the	computation	is	just	a	small	fraction	
of	elapsed	time.		

For	 optimization	 heuristics	 the	 question	 of	 “how	 fast”	 is	 usually	 evaluated	 in	 terms	 of	 the	
tradeoff	between	computation	time	and	solution	quality:		How	fast	can	it	return	a	solution	that	
meets	 a	 given	 quality	 threshold	 X?	 Or,	 for	 sampling	 applications:	 	 How	 fast	 can	 it	 return	N	
distinct	solutions	of	quality	Y?			

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

http://ubiquity.acm.org	 6	 ©2017	Association	for	Computing	Machinery	

I	 don't	 have	 short	 answers	 to	 these	questions,	 because	 they	 are	highly	 input-dependent	 and	
hard	 to	 summarize.	 Serious	 performance	 evaluation	 of	 quantum	 annealing	 has	 only	 been	
possible	in	the	last	couple	years.	By	comparison,	scores	of	research	groups	have	spent	decades	
studying	the	(classical)	simulated	annealing	heuristic,	yet	there	is	still	no	simple	way	to	describe	
its	performance.		

	

WT:	One	or	two	concrete	examples,	with	solution	qualities	and	runtimes,	would	help.	

CM:	 Here	 is	 an	 example	 from	 a	 recent	 paper:	 	 Trummer	 and	 Koch	 compared	 a	 D-Wave	 2X	
system	 (1,000	qubits)	 to	 five	 classical	 algorithms	on	 inputs	 for	multiple	query	optimization,	a	
database	application	[3].	They	looked	at	the	trade-off	between	computation	time	and	solution	
quality.	Generally	speaking	the	QPU	converged	very	quickly	to	very	good	solutions,	whereas	the	
classical	solvers	converged	more	slowly	but	could	find	comparable	(sometimes	better)	solutions	
if	given	long	enough	time.	With	times	(not	counting	setup)	for	the	D-Wave	system	ranging	from	
about	 one	millisecond	 to	 one	 second,	 the	 software	 solvers	 took	 up	 to	 1,000	 times	 longer	 to	
“catch	up”	and	return	solutions	of	comparable	quality.	A	separate	test	showed	solutions	found	
by	the	QPU	in	one	second	were	typically	within	0.4	percent	of	optimal.	

At	one	end	of	the	performance	spectrum,	Denchev	et	al.	found	a	D-Wave	2X	QPU	can	optimally	
solve	 a	 class	 of	 synthetic	 inputs	 100	 million	 times	 faster	 than	 some	 (but	 not	 all)	 classical	
algorithms	[6].	This	is	a	difference	on	the	scale	of	one	second	versus	three	years	of	computation	
on	 a	 single	 core.	 	 	 At	 the	 other	 end,	 we	 know	 classical	 algorithms	 with	 nanosecond-scale	
instruction	 sets	 can	 solve	 small	 and/or	 easy	 inputs	 faster	 than	 the	 above-mentioned	 lower	
bounds.	That	is	the	current	range	of	possibility	that	we	are	dealing	with.		

I	 should	 point	 out	 whatever	 numbers	 I	 give	 here—including	 those	 lower	 bounds—will	 likely	
improve	as	the	technology	continues	to	get	better	along	with	increasing	qubit	counts.	Denchev	
et	al.,	for	example,	noted	their	D-Wave	2X	QPU	solved	the	biggest	problems	10,000	times	faster	
than	their	predictions	based	on	performance	of	the	previous	year's	D-Wave	Two	QPU	[6].			

	

WT:	But	can	it	beat	a	massively	parallel	computer?		

CM:	 Here	 is	 another	 question	 with	 no	 simple	 answers.	 First	 let	 me	 say	 the	 hoopla	 about	
quantum	computation	offering	enormous	speedups	over	classical	computers	is	based	on	back-
of-the	envelope	calculations	 from	theoretical	arguments	about	 the	worst-case	cost	of	 solving	

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

http://ubiquity.acm.org	 7	 ©2017	Association	for	Computing	Machinery	

NP-hard	problems.	That	is,	given	an	input	with	2000	variables,	a	classical	algorithm	would	have	
to	search	a	space	of	22000	bit	strings	to	certify	it	has	found	an	optimal	solution.		

There	 have	 been	 about	 280	 nanoseconds	 since	 the	 Big	 Bang,	 so	 solving	 a	 problem	 in	 five	
microseconds	 does	 indeed	 represent	 an	 unimaginably	 large	 speedup	 over	 that	 worst-case	
scenario.	Parallel	computation	would	not	help	unless	you	have	an	unimaginably	large	number	
of	 cores	 on	 hand	 (the	 number	 of	 atoms	 in	 the	 known	 universe	 is	 about	 2240).	 And	 in	 this	
theoretical	context,	you	are	allowed	to	have	as	many	quantum	computers	as	you	have	classical	
computers.	 	 In	 other	 words,	 parallel	 models	 of	 computation	 don't	 change	 the	 fundamental	
arguments	about	problem	complexity.			

However,	 the	 relevant	 theoretical	 questions	 are	 open	 and	 nobody	 knows	 if	 this	 line	 of	
reasoning	 is	correct.	Fast	solution	times	for	a	given	set	of	problems	do	not	constitute	a	proof	
that	all	quantum	computations	are	fast.	Also,	a	 faster	classical	algorithm	might	be	discovered	
someday,	thereby	settling	the	famous	𝑃 = 𝑁𝑃	question	in	the	affirmative.		

No	matter	how	the	theory	turns	out,	 it	 is	not	really	relevant	to	practice.	For	perhaps	obvious	
reasons,	 nobody	 uses	 the	 worst-case	 approach	 to	 solve	 real	 application	 problems.	 Instead,	
classical	heuristics	are	used,	which	can	find	pretty	good	solutions,	pretty	quickly,	on	some	sets	
of	inputs.		

Having	working	quantum	computers	in	hand	makes	it	possible	to	compare	performance	against	
classical	heuristics.	The	runtime	of	any	such	heuristic	on	an	input	of	size	2,000	can	be	between	
a	 few	microseconds	 (best	 case),	up	 to	Big	Bang	 time	scales	 (worst	 case).	 So	 the	potential	 for	
enormous	 speedup	 is	 still	 there,	 but	we	don’t	 know	 in	 advance	which	 inputs	will	 be	 easy	 or	
hard	for	which	heuristics.	This	creates	the	“decades	of	research”	issue	I	mentioned	earlier.		

The	 same	 issues	 apply	 when	 we	 talk	 about	 comparisons	 to	 massively	 parallel	 computing	
platforms:	 A	 back	 of	 the	 envelope	 calculation	 about	 theoretical	 speedup	 doesn't	 capture	
reality,	and	reality	is	hard	to	summarize.	That	being	said,	a	couple	of	the	heuristics	we	compare	
against	have	shown	moderate	runtime	improvements	from	parallelization.	In	other	cases,	there	
is	no	speedup,	and	sometimes	 the	parallel	 code	 is	 slower.	Very	generally	 speaking,	 it	doesn't	
appear	 that	 parallel	 computation	 will	 be	 a	 huge	 difference-maker	 in	 this	 arena	 (a	 D-Wave	
technical	report	discusses	this	topic	in	more	detail	[7]).		

	

WT:	What’s	inside	the	layers	of	cooling	equipment	of	a	D-Wave	system?	In	other	words,	what	
are	the	bits	and	how	are	they	linked?	

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

http://ubiquity.acm.org	 8	 ©2017	Association	for	Computing	Machinery	

CM:	It’s	not	just	cooling	equipment.	Like	Schrödinger’s	cat,	the	QPU	must	do	its	work	in	a	closed	
box,	isolated	as	much	as	possible	from	ambient	energy	that	could	derail	the	quantum	process.	
So	it	operates	in	a	highly	shielded	environment	where	the	temperature	is	below	.015	kelvin,	the	
magnetic	field	is	50	thousand	times	less	than	Earth’s	magnetic	field,	and	atmospheric	pressure	
is	10	billion	times	less	than	outside.		

The	qubits	are	made	of	microscopic	loops	of	niobium,	a	metal	that	becomes	a	superconductor	
at	temperatures	below	9	kelvin.	Qubits	are	linked	together	by	couplers,	also	made	of	niobium.	
Figure	 1	 shows	 a	 photograph	 of	 a	 QPU	 chip	 inside	 its	 mounting	 apparatus—it	 is	 the	 black	
square	in	the	center,	about	the	size	of	a	thumbnail.		

	

Figure	1.	A	quantum	processing	unit	(QPU)	in	its	mounting	apparatus.	

	

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

http://ubiquity.acm.org	 9	 ©2017	Association	for	Computing	Machinery	

Figure	2	shows	an	8x8	grid	of	so-called	Chimera	cells	(on	a	smaller	predecessor	chip)	containing	
the	 qubits	 and	 couplers	 that	 perform	 the	 actual	 computation.	 Each	 cell	 has	 eight	 qubits	
consisting	of	 four	 thin	 loops	across	and	 four	 thin	 loops	down,	connected	by	couplers	at	 their	
intersections.	There	are	also	couplers	between	qubits	in	one	cell	and	those	in	its	neighbor	cells.	
Other	components	on	the	chip	include	qubit	readout	circuitry	and	a	framework	of	digital-analog	
converters	to	control	qubit	and	coupler	states.	A	paper	by	Bunyk	et	al.	describes	some	of	the	
considerations	 that	 went	 into	 selecting	 this	 topology	 [8].	 Basically,	 it	 offered	 the	 best	
combination	of	features	within	certain	design	constraints	imposed	by	physics.	(Other	topologies	
are	expected	for	use	in	future	generations.)	

	

Figure	 2.	 An	 8x8	 Chimera	 graph,	 with	 one	 Chimera	 cell	 magnified.	 The	 cell	 contains	 an	
arrangement	of	eight	qubits,	long	thin	loops	of	niobium	marked	in	red,	which	are	connected	
at	 their	 intersections	 by	 couplers.	 The	 interstices	 are	 filled	 with	 qubit	 read	 and	 control	
devices.	

	

Figure	3	 illustrates	how	this	qubit	arrangement	corresponds	to	a	Chimera	graph.	The	left	side	
shows	eight	qubits	(red	loops)	and	16	couplers	(blue	ells).	Also	shown	are	eight	couplers	(blue	
circles)	 connecting	 to	 neighbor	 qubits	 in	 the	 north	 and	 east	 cells	 (couplers	 to	 the	 south	 and	
west	are	not	 shown	here).	 The	 right	 side	 shows	a	graphical	 view	where	 red	nodes	 represent	
qubits	and	blue	edges	represent	couplers.	Each	cell	forms	a	4x4	complete	bipartite	graph.		

	

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

http://ubiquity.acm.org	 10	 ©2017	Association	for	Computing	Machinery	

	

Figure	 3.	 Left:	 A	 single	 Chimera	 cell	 contains	 eight	 qubits	 laid	 out	 in	 thin	 loops	 (red),	 four	
across	 and	 four	 down.	Qubits	 are	 connected	 by	 couplers	 (blue	 cells)	 at	 their	 intersections.	
Also	shown	are	eight	of	16	possible	couplings	(blue	circles)	connecting	to	qubits	 in	adjacent	
cells.	Right:	 	Qubit	and	coupler	connectivity	 is	described	by	a	complete	bipartite	graph	with	
eight	nodes	 (red,	 representing	qubits)	 and	16	edges	 (blue,	 representing	 couplers).	 Edges	 to	
qubits	in	neighbor	cells	located	north	and	east	are	also	shown.	

	

The	2000Q	processor	design	 is	based	on	a	16x16	Chimera	graph	containing	2,048	nodes.	The	
working	 graph	 for	 any	 given	 QPU	 is	 a	 subgraph	 of	 a	 Chimera	 graph,	 because	 an	 imperfect	
fabrication	process	leaves	a	small	percentage	of	qubits	and	couplers	unusable.		

	

WT:	 	The	fundamental	problem	the	D-Wave	processor	solves	is	the	Ising	spin	model.	Please	
explain	what	that	is.	

CM:	 	 You	 are	 given	 a	 graph	 𝐺 = (𝑉,𝐸)	 with	 weights	 ℎ = {ℎ!}	 on	 the	 nodes	 and	 weights	
𝐽 = {𝐽!"}	 on	 the	 edges.	 The	 problem	 is	 to	 assign	 spin	 values	 𝑠! = ± 1	 to	 the	 nodes	 so	 as	 to	
minimize	the	energy	function	defined	by	

	

𝐸 𝑠 = ℎ!𝑠!
!∈𝒱

 + 𝐽!"𝑠!𝑠!
(!,!)∈!

. (1)

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

http://ubiquity.acm.org	 11	 ©2017	Association	for	Computing	Machinery	

Figure	 4	 shows	 an	 example	 problem	 defined	 on	 a	 4-node	 graph.	 The	 right	 side	 shows	 one	
possible	 spin	 assignment,	which	 has	 energy	𝐸 𝑠 = −8.	 This	 happens	 to	 be	 an	 optimal	 spin	
assignment	for	this	input.		

	

Figure	 4.	 An	 Ising	 model	 problem	 defined	 on	 a	 4-node	 graph.	 The	 energy	 function	 is	
minimized	at	𝑬(𝒔) = −𝟖 by	the	spin	assignment	shown	here.	

	

Ising	 spin	model	 can	 be	 trivially	 transformed	 to	 quadratic	 unconstrained	 binary	 optimization	
(QUBO),	 defined	 on	 binary	 values	 𝑥 = {0, 1}	 instead	 of	 spins,	 or	 maximum	 weighted	 two-
satisfiability,	defined	on	Boolean	values	𝑏 = {𝐹,𝑇},	which	may	be	more	familiar	to	computer	
scientists.		

	

WT:	Now	for	the	hard	part:	How	does	the	D-Wave	computer	solve	this	problem?	Apparently,	
the	machine	itself	is	a	graph.	Edge	and	node	weights	will	have	to	be	loaded	somehow	into	the	
graph,	 and	 the	nodes	must	 choose	 +1	or	−1	 so	 that	𝑬 𝒔 	 is	minimized.	But	how	does	 this	
happen?	

CM:	 First,	 the	 Ising	 model	 input (ℎ!, 𝐽!)	 defined	 on	 a	 general	 graph	 𝐺	 is	 mapped	 to	 an	
equivalent	problem	(ℎ, 𝐽)	on	the	working	graph	𝐶,	using	a	process	called	minor-embedding	(for	
examples,	see	[2,	3,	5,	9]).	Roughly	speaking,	minor-embedding	maps	each	node	of	degree	𝑑 in	
𝐺 into	𝑑/4	nodes	of	degree	4	 in	𝐶,	plus	additional	edges	to	chain	those	nodes	together.	This	
process	 expands	 the	 total	 graph	 size	 somewhat,	 but	 the	 mapping	 is	 always	 sufficient	 to	
preserve	the	information	in	(ℎ′, 𝐽′).		

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

http://ubiquity.acm.org	 12	 ©2017	Association	for	Computing	Machinery	

The	 ℎ	 and	 𝐽	 weights	 represent	 electromagnetic	 forces	 that	 push	 qubits	 towards	 certain	
magnetic	polarities	(𝑢𝑝 = +1,𝑑𝑜𝑤𝑛 = −1).	For	example,	in	the	energy	function	(1),	term		ℎ!𝑠! 	
is	minimized	(i.e.,	negative)	when		ℎ! 	and	𝑠! 	have	opposite	signs,	and	term	𝐽!" 𝑠! 𝑠! 	is	minimized	

when 𝐽!" 	 	 is	negative	and	𝑠! , 𝑠! 	have	matching	signs,	or	 𝐽!" 	 is	positive	and	𝑠! , 𝑠! 	have	opposite	
signs.		

These	 forces	 and	 polarities	 correspond	 to	 various	 levels	 of	magnetic	 energy,	 and	 the	 qubits	
naturally	seek	their	lowest-energy	state	(called	the	ground	state),	just	as	water	seeks	the	lowest	
point	in	a	natural	landscape.		

A	 quantum	 annealing	 algorithm	𝐻(𝑟)	 is	 analog,	 and	 runs	 over	 a	 time	 interval	 𝑟: 0 → 1. It	 is	
specified	by	four	components:		(1)	the	problem	Hamiltonian	𝐻!,	a	matrix	that	describes	system	
energies	determined	by	ℎ and	𝐽;	 (2)	an	 initial	Hamiltonian	𝐻!	 that	describes	 initial	conditions;	
(3)	a	pair	of	functions	𝐴(𝑟)	 (decreasing	 in	time)	 	and	𝐵(𝑟)	 (increasing	 in	time)	 	that	control	a	
transition	from	𝐻! to	𝐻!	;		and	(4)	the	total	annealing	time	𝑡!	for	the	transition,		so	𝑟 = 𝑡 ∕ 𝑡!.	
Like	this:	

	

𝐻 𝑟 = 𝐴 𝑟 𝐻! + 𝐵 𝑟 𝐻! as 𝑟 = 0 → 1. (2)

(See	Wikipedia	on	quantum	annealing	for	a	description	of	the	underlying	physics.)			At	the	end	
of	 the	 process,	 the	 qubit	 spin	 states	 are	 read	 and	 interpreted	 as	 a	 solution	 to	 the	 problem.	
Different	quantum	annealing	algorithms	correspond	to	different	choices	for	these	components.	
In	the	current	2000Q	system,	𝐻!	is	set	to	a	default	value,	𝐻!	and	𝑡!	are	parameters	set	by	the	
user,	and	𝐴 𝑠 ,𝐵(𝑠)	are	from	a	family	of	functions	that	can	be	partially	specified	by	the	user.		

		

WT:	 Let	me	 try	 to	 describe	 this	 process	 in	my	 own	words,	 since	 this	 is	 crucial.	 The	 initial	
Hamiltonian	sets	 the	qubit	weights	 to	neutral,	meaning	all	 the	qubits	can	settle	with	equal	
probability	 on +𝟏	 or	−𝟏.	 The	 edge	weights	 are	 also	 set	 to	 neutral,	 so	 the	 energy	 function	
𝑬(𝒔)	is	the	same	for	all	possible	combinations	of	+𝟏	and	−𝟏	of	the	qubits.	Now	we	gradually	
transition	to	the	problem	Hamiltonian	by	turning	the	weights	up	or	down.	The	result	is	that	
𝑬(𝒔)	is	no	longer	evenly	distributed—we	get	an	energy	surface	with	peaks	and	valleys.	While	
we	do	 this,	 the	annealing	magic	happens:	 the	water	pools	 in	 the	valleys,	meaning	 that	 the	
probabilities	for	settling	in	+1	or	−𝟏	shift	in	such	a	way	as	to	prefer	a	minimum	energy	state.	
This	happens	over	a	time	period	in	which	the	peaks	and	valleys	become	more	pronounced.	Is	
this	picture	correct?		

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

http://ubiquity.acm.org	 13	 ©2017	Association	for	Computing	Machinery	

CM:	 Yes,	 that's	 about	 right,	 although	 I	 don't	 think	 “setting	weights	 to	 neutral”	 is	 exactly	 the	
right	way	to	put	it.	We	have	to	think	about	it	in	terms	of	two	quantum	properties,	superposition	
and	entanglement.		

Superposition.	 A	 classical	 bit	 can	 be	 in	 either	 state	 0	 or	 1,	 and	 a	 register	 of 𝑁	 bits	 can	 only	
represent	 one	 of	 2!possible	 states	 at	 a	 time.	 But	 a	 qubit	 can	 be	 in	 superposition—
simultaneously	 in	 both	 states	 at	 the	 same	 time,	 according	 to	 a	 certain	 probability.	
Superposition	cannot	be	observed—like	that	famous	cat,	which	is	both	alive	and	dead	while	the	
box	is	closed,	but	“snaps”	to	one	state	or	the	other	when	you	open	the	box	and	look	at	it.	

The	 initial	Hamiltonian	pushes	qubits	 into	an	equal	 superposition	of	−1	 and	+1.	 For	 the	 full	
qubit	system,	this	means	that	all	possible	outputs	are	equally	likely.		

At	 initialization	 time,	 𝐴(𝑠)	 puts	 the	 initial	 Hamiltonian	 at	 full	 strength	 and	 𝐵(𝑠)	 puts	 the	
problem	Hamiltonian	 at	 zero	 strength.	 The	 transition	 gradually	 dials	 down	𝐴(𝑠)	 and	dials	 up	
𝐵(𝑠),	 so	 that	 the	ℎ	 and	 𝐽	 forces	 are	 applied,	 first	 weakly	 and	 gradually	 becoming	 stronger.	
When	the	process	finishes,𝐻!	is	at	zero	strength	and	𝐻!	is	at	full	strength.	At	the	end,	the	qubit	
states	are	read	and	interpreted	as	a	solution.	

Appealing	 again	 to	 our	 water	 analogy,	 the	water	 represents	 superposition	 probabilities.	 The	
superposition	 state	 can	 be	 everywhere	 on	 the	 surface	 at	 any	 time,	 covering	 all	 possible	
solutions,	but	it	tends	to	pool	in	low-lying	areas:		A	deeper	pool	at	a	given	spot	𝑠	corresponds	to	
higher	probability	of	s	being	read	when	the	algorithm	finishes.		

This	algorithm	creates	a	surface	that	is	initially	flat,	with	water	spread	evenly	across	it.	Then	it	
gradually	evolves	from	the	flat	surface	to	one	that	matches	𝐸(𝑠),	and	the	probabilities	for	each	
qubit	settle	on	either	−1	or	+1.	If	everything	goes	well	(this	is	the	probabilistic	heuristic	part),	
by	the	time	the	algorithm	finishes,	the	water	has	collected	in	one	spot	that	corresponds	to	an	
optimal	solution.		

	

WT:	Where	does	entanglement	happen?	I	suppose	you	need	it	when	splitting	a	problem	node	
across	 several	physical	nodes,	 in	which	case	 they	must	maintain	 the	same	state.	But	 if	 you	
link	the	split	nodes	with	a	strong	negative	weight,	then	the	forces	will	make	sure	they	have	
the	 same	 state.	 Is	 this	 entanglement?	 Some	 physicists	 claim	 there	 is	 no	 large-scale	
entanglement	on	D-Wave	machines.	How	many	nodes	can	a	D-Wave	system	keep	entangled?			

CM:	A	group	of	entangled	qubits	can	change	their	 (superposition)	states	simultaneously	 in	an	
indivisible	way,	rather	than	individually.	The	edge	weights	create	magnetic	couplings	between	

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

http://ubiquity.acm.org	 14	 ©2017	Association	for	Computing	Machinery	

qubits:	 	 these	 couplings	 create	 entanglement	 in	 the	 ground	 state	 of	 the	 qubit	 system	 as	 it	
evolves.		

Consider	a	small	2-qubit	system	with	four	possible	spin	configurations,	with	weights	ℎ!, ℎ! =
0 and 𝐽!" = +1.	 The	classical	minimum-energy	 spin	 states	are	 (+1,−1)	 and	(−1,+1).	During	
the	anneal,	the	ground	state	for	the	system	is	a	superposition	of	both	states.	So	the	individual	
qubits	 are	 neither	 +1	 nor	−1,	 they	 are	 in	 equal	 superposition,	 pointing	 up	 and	 down	 at	 the	
same	time.	Due	to	entanglement,	their	superposition	states	are	linked,	so	that,	if	you	read	one	
and	 then	 the	other	 they	would	have	opposite	 signs.	 This	mysterious	 instantaneous	 linkage	 is	
not	the	same	as	a	magnetic	signal,	which	would	apply	to	classical	states	(up	or	down	only),	and	
would	attenuate	over	distance.		

In	 the	 context	 of	 quantum	 annealing,	 superposition	 and	 entanglement	 together	 create	 a	
phenomenon	 known	 as	 “tunneling.”	 In	 our	 water	 metaphor,	 this	 means	 under	 certain	
circumstances	the	landscape	is	effectively	porous,	and	the	qubit	states	can	go	directly	through	
hills	 rather	 than	 climbing	 over	 them.	 Classical	 algorithms	 (and	magnets)	 cannot	 tunnel:	 They	
must	change	state	by	climbing	over	hills	and	moving	around	the	landscape	step	by	step.			

Tunneling	 is	 the	magical	property	 that,	 in	an	 ideal	scenario,	allows	the	quantum	algorithm	to	
slide	directly	to	a	ground	state	even	if	there	are	hills	along	the	way,	as	long	as	the	anneal	time	
𝑡!	is	above	a	certain	threshold	(unknown	in	practice).	No	real-world	quantum	computation	can	
achieve	 the	 theoretically	 ideal	 situation,	 though.	 Despite	 all	 the	 shielding	 and	 cold	
temperatures,	 there	 is	 always	 some	 amount	 of	 noise	 from	 the	 ambient	 environment	 that	
interferes	with	the	computation.	We	have	a	quantum	annealing	algorithm	that	uses	tunneling	
in	limited	ways,	and	we	are	working	to	understand	this	phenomenon.		

As	far	as	claims	that	there	is	no	large-scale	entanglement,	I	think	it	would	be	more	accurate	to	
say	 large-scale	 entanglement	 has	 not	 been	demonstrated.	 Indeed,	 it	 is	 a	 significant	 scientific	
challenge	to	perform	an	experiment	to	detect	entanglement—which	only	takes	place	when	the	
qubits	are	shielded	from	ambient	energy—since	energy	from	the	experimental	apparatus	can	
destroy	 the	 very	 effect	 it	 is	 trying	 to	 detect.	 The	 physics	 experiments	 demonstrating	
entanglement	 in	 a	 D-Wave	 QPU	 were	 only	 designed	 to	 detect	 entanglement	 in	 an	 8-qubit	
system	[9].	

A	later	non-intrusive	experiment	based	on	analyzing	outputs	from	carefully-constructed	inputs,	
showed	tunneling	does	occur	(which	could	only	happen	if	entanglement	is	present)	on	systems	
of	 945	 qubits	 [6].	 But	 I	 don't	 think	 it	 is	 possible	 to	 infer	 from	 that	 result	 how	many	 qubits	
actually	did	tunnel,	or	how	many	were	entangled.		

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

http://ubiquity.acm.org	 15	 ©2017	Association	for	Computing	Machinery	

WT:	You	mentioned	that	quantum	annealing	is	analog.	I	suppose	the	edge	and	node	weights	
and	the	forces	are	analog.	What	 is	 the	resolution	of	these	weights,	 i.e.,	how	many	possible	
values	 are	 there?	 And	 how	 does	 the	 analog	 computation	 affect	 the	 problems	 that	 can	 be	
solved	and	the	answers	generated?	

CM:	 	 	Right,	 the	transition	of	 forces	 from	𝐻!	 to	𝐻!	 is	analog.	The	weights	can	be	specified	as	
regular	floating-point	numbers.	Analog	control	errors	create	small	perturbations	on	ℎ	and	𝐽,	so	
the	energy	function	that	the	QPU	solves	is	slightly	different	from	the	one	specified	by	the	user.	
If	 the	 difference	 is	 big	 enough	 that	 states	 swap	 ranks	 (i.e.,	 the	 best	 solution	 in	 the	 original	
problem	 is	 only	 second-best	 in	 the	 perturbed	 problem),	 then	 the	 algorithm	 has	 lower	
probability	of	finishing	in	ground	state,	and	higher	probability	of	finishing	in	the	next-best	state.		

I	can't	give	an	exact	number	for	the	required	weight	resolution	on	inputs	of	interesting	size:	it	
depends	on	how	far	apart	 the	energies	of	 the	 low-energy	states	are.	Since	we	work	with	NP-
hard	problems	we	don't	 typically	have	knowledge	of	 the	optimal	and	near-optimal	 states,	 so	
this	quantity	is	hard	to	analyze	or	predict	in	practical	scenarios.		

There	 are	 various	 ways	 to	 compensate	 for	 analog	 errors;	 for	 example,	 a	 system	 utility	 is	
available	 that	 can	 average-out	 systematic	 errors,	 similar	 to	 the	 way	 randomized	 quicksort	
avoids	the	worst-case	scenario.	Also,	𝐻! can	be	re-formulated,	or	techniques	of	quantum	error	
correction	can	be	applied,	to	increase	the	separation	between	ground	states	and	other	states	in	
𝐸(𝑠),	to	mitigate	the	rank-swapping	scenario.	Also,	as	mentioned	previously,	new	generations	
of	processors	tend	to	show	improved	performance	due	to	better	suppression	of	these	types	of	
errors.	

	

WT:	Does	quantum	annealing	require	quantum	entanglement?	

CM:	 Quantum	 annealing	 exploits	 both	 quantum	 entanglement	 and	 superposition,	 but	 those	
properties	 are	not	necessarily	 required	 to	 solve	every	 input.	 For	example,	 if	 the	 landscape	 is	
shaped	 like	 a	 big	 cherry-bowl	 instead	 of	 having	 lots	 of	 hills	 and	 valleys,	 then	 the	 quantum	
algorithm	does	not	need	to	invoke	quantum	tunneling:	It	just	slides	down	the	hill	like	a	classical	
greedy	algorithm	would.	Entanglement	would	be	present	but	simple	magnetic	forces	would	be	
enough	to	solve	this	problem.		

	

WT:	Now	 that	we	have	an	 idea	of	how	 the	machine	works,	please	explain	how	a	 concrete	
problem	is	mapped	to	the	Ising	model,	so	the	machine	can	solve	it.	

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

http://ubiquity.acm.org	 16	 ©2017	Association	for	Computing	Machinery	

CM:	 In	 the	 circuit	 satisfiability	 problem,	 you	 are	 given	 a	 binary	 circuit	 and	 the	 question	 is	
whether	there	is	an	assignment	of	values	to	inputs	that	makes	the	circuit	evaluate	to	1	(assume	
that	0 = 𝐹	and	1 = 𝑇).	Figure	5	shows	a	small	example	circuit	with	inputs 𝑥!, 𝑥!, 𝑥!	and	two	
gates,	AND	above	and	OR	below.	 This	 circuit	 has	 value	1,	 for	 example,	when	𝑥! = 1, 𝑥! = 1	
and	𝑥! = 0. 	

	

Figure	 5.	 Transformation	 from	 circuit	 satisfiability	 to	 Ising	 model.	 Each	 gate	 in	 the	 circuit	
corresponds	to	a	Boolean	clause,	plus	an	extra	clause	(top	row)	that	says	the	circuit	output	is	
1.	Each	clause	is	translated	to	an	arithmetic	expression	defined	on	variables	𝒔𝒊 ∈ {−𝟏,+𝟏}.	
The	circuit	inputs	𝒙𝟏,𝒙𝟐,𝒙𝟑	(with	values	{𝟎,𝟏})	make	the	circuit	evaluate	to	𝟏 (𝑻𝒓𝒖𝒆)	exactly	
when	the	corresponding	expression	inputs	𝒔𝟏, 𝒔𝟐, 𝒔𝟑	(with	values	{−𝟏,+𝟏})	minimize	the	sum	
of	these	three	expressions.	

	

Step	 one	 in	 the	 transformation	 is	 to	 write	 each	 gate	 as	 a	 Boolean	 clause	 of	 the	 form	
(𝑧 𝐸𝑄 (𝑥 𝑂𝑃 𝑦)),	where	𝑂𝑃	is	the	gate	operation	and	the	clause	is	true	when	the	output	wire	𝑧	
equals	 the	 result	 of	 the	 operation	 applied	 to	 input	 wires	 𝑥	 and	 𝑦.	 The	 two	 clauses	 for	 our	
example	 circuit	 are	 listed	below	 it,	 together	with	an	extra	 clause	on	 top	 that	 says	 the	 circuit	
output	is	equal	to	1.	For	inputs	𝑥!, 𝑥!, 𝑥! the	circuit	value	is	1	exactly	when	all	three	clauses	are	
satisfied,	that	is,	all	three	have	value	1.		

The	next	step	is	to	transform	each	clause	to	an	arithmetic	expression.	Assume	the	binary	values	
(0,1)	map	 to	spin	values	(−1,+1),	 respectively.	Since	 Ising	model	 is	a	minimization	problem,	

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

http://ubiquity.acm.org	 17	 ©2017	Association	for	Computing	Machinery	

the	 goal	 is	 to	 build	 an	 energy	 function	𝐸(𝑠)	 defined	 on	 (−1,+1) that	 has	minimum	 energy	
exactly	when	the	corresponding	binary	values	(0,1)	satisfy	all	three	clauses.	Three	expressions	
matching	the	three	clauses	are	shown	at	the	bottom	right	of	Figure	5.	(There	are	different	ways	
to	set	up	these	expressions;	see	references	for	more	information	[2,	9].)			

Some	details	of	this	correspondence	for	the	OR	clause	in	the	middle	row	are	shown	in	Figure	6.	
The	left	side	of	the	truth	table	shows	all	possible	inputs	and	outputs	for	the	clause	defined	on	
𝑥!, 𝑥!, 𝑥!:	 	The	clause	value	 is	1	 in	 rows	where	𝑥!	equals	 the	OR	of	𝑥!	and	𝑥!.	The	right	side	
shows	the	corresponding	inputs	and	outputs	for	the	Ising	mode	expression	defined	on	𝑠!, 𝑠!, 𝑠!.			
In	every	row	where	the	clause	is	satisfied,	the	expression	is	minimized	with	value	−3.		

	

Figure	6.	The	clause	truth	table	(left)	and	the	Ising	model	expression	(right)	show	all	possible	
inputs	and	outputs	for	these	two	versions	of	the	OR	circuit	of	Figure	5.	The	clause	is	satisfied	
(has	value	𝟏 = 𝑻𝒓𝒖𝒆)	in	the	same	rows	for	which	the	IM	expression	is	minimized	(has	value	
−𝟑).	

	

The	requirement	that	all	clauses	must	be	satisfied	becomes	a	requirement	that	the	sum	of	all	
expressions	must	be	minimized.	The	 last	step	 in	 the	 transformation	 is	 to	add	the	expressions	
together	and	collect	terms	(constants	can	be	discarded).	The	result	 is	an	 Ising	model	 input	as	
shown	on	 the	 left	of	Figure	7.	One	possible	way	 to	map	 (ℎ, 𝐽)	 to	a	Chimera	cell	 is	 to	use	 the	
labeling	scheme	shown	on	the	right	(the	weights	of	unused	nodes	and	edges	are	set	to	0).		

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

http://ubiquity.acm.org	 18	 ©2017	Association	for	Computing	Machinery	

	

Figure	7.	Left:		Ising	model	inputs	(𝒉, 𝑱)	for	the	circuit	of	Figure	4.	Right:		A	mapping	of	(𝒉, 𝑱)	onto	a	
Chimera	cell.	Nodes	with	𝒉 = 𝟎 are	not	labeled,	edges	with	𝑱𝒊𝒋 = 𝟎	are	not	shown.	The	𝒉𝟐	weight	is	
split	across	two	nodes,	which	are	connected	by	a	chain	(black	edge)	having	a	strong	negative	weight,	
in	this	case	-10.		

Note	ℎ! is	split	across	two	nodes	that	are	connected	by	a	so-called	“chain”	(black	edge),	which	
is	 set	 to	 a	 strong	 negative	 value	 like	−10 to	 ensure	 they	 end	 up	with	 the	 same	 spin	 in	 the	
output.	This	split	is	necessary	because	the	triangle	𝐽!", 𝐽!", 𝐽!"	can't	be	embedded	directly	onto	
the	Chimera	topology;	this	decision	is	part	of	the	minor-embedding	process	mentioned	earlier.		

Send	this	problem	to	the	QPU,	and	it	will	return	a	sample	of	spin	assignments	𝑠!… 𝑠!,	some	of	
which	correspond	to	ground	states	of	(ℎ, 𝐽)	(there	are	four	such	ground	states).	In	those	states,	
the	assignments	of	spin	values	to	𝑠!, 𝑠!, 𝑠!	can	be	mapped	back	to	assignments	of	binary	values	
to	𝑥!, 𝑥!, 𝑥!	for	which	the	circuit	value	is	1,	using	our	convention	that	spin	−1	equals	binary	0	
and	spin	+1	equals	binary	1.		

	

WT:	 Thank	 you,	 Catherine,	 for	 this	 very	 informative	 interview.	 Obviously,	 a	 QPU	 is	 very	
different	 from	a	 traditional	 CPU.	 There	 is	 only	 a	 single	 solver	 hardwired	 into	 the	machine,	
such	that	the	qubits	all	tug	on	each	other	in	order	to	find	a	solution	to	the	Ising	model.	The	D-
Wave	 system	seems	 to	be	a	 very	 cool	 (literally)	 and	versatile	 accelerator	 for	 combinatorial	
problems.	

This	interview	has	been	condensed	and	edited	for	clarity.	

	

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

http://ubiquity.acm.org	 19	 ©2017	Association	for	Computing	Machinery	

For	those	who	want	to	see	the	machine,	a	3-part	tour	of	the	D-Wave	system	can	be	found	on	
YouTube:	 look	 for	 “D-Wave	 lab	 tour.”	 Catherine's	monograph,	 aimed	 at	 a	 computer	 science	
audience,	 discusses	 adiabatic	 quantum	 computation	 and	 quantum	 annealing	 in	 more	 detail	
[11].	Catherine	would	 like	 to	 thank	Andrew	Berkley	and	Mark	 Johnson	of	D-Wave	for	helping	
out	with	the	physics	discussion.		

	 			

	
References	

[1]	Farhi	et	al.	A	quantum	adiabatic	evolution	algorithm	applied	to	random	instances	of	an	NP-
complete	problem.	Science	292,	5516	(2001).		

[2]	Z.	Bian	et	al.	Mapping	constrained	optimization	problems	to	quantum	annealing	with	
applications	to	fault	diagnosis.	Frontiers	in	ICT	3,	14	(2016).		

[3]	Trummer,	I.	and	Koch.	C.	Multiple	query	optimization	on	the	D-Wave	2X	adiabatic	quantum	
computer.	Proceedings	of	the	VLDB	Endowment	9,	9	(2016).		

[4]	A.	Douglass	et	al.	Constructing	SAT	Filters	with	a	Quantum	Annealer.	International	
Conference	on	Theory	and	Applications	of	Satisfiability	Testing—SAT	2015.	Springer	LNCS	9340,	
2015,	104-120,.		

[5]	E.	Andriyash	et	al.	Boosting	integer	factoring	performance	via	quantum	annealing	offsets.	D-
Wave	Technical	Report	14-1002A-B.	2016.	Available	at	
http://www.dwavesys.com/resources/publications.	

[6]	Denchev	et	al.	What	is	the	computational	value	of	finite	range	tunneling?,	Physical	Review	X	
6,	3	(2015.)		

[7]	Limits	on	Parallel	Speedup	for	Classical	Ising	Model	Solvers.	D-Wave	White	Paper	14-1004A-
A.	2017;	https://www.dwavesys.com/sites/default/files/14-
1004A_wp_Limits_on_Parallel_Speedup_for_Classical_Ising_Model_Solvers.pdf	

[8]	Bunyk	et	al.	Architectural	considerations	in	the	design	of	a	superconducting	quantum	
annealing	processor.	IEEE	Transactions	on	Applied	Superconductivity	24,	4	(August	2014).		

[9]	Su	et	al.	A	quantum	annealing	approach	for	Boolean	satisfiability	problem.	In	Proceedings	of	
the	53rd	Annual	Design	Automation	Conference	(DAC'16).	Article	148.	ACM,	New	York,	2016.	

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

http://ubiquity.acm.org	 20	 ©2017	Association	for	Computing	Machinery	

[10]	Lanting	et	al.	Entanglement	in	a	quantum	annealing	processor.	Physics	Review	X	4,	021041	
(May	2014).		

[11]	McGeoch,	C.	C.	Adiabatic	Quantum	Computation	and	Quantum	Annealing.	Morgan	&	
Claypool	Publishers,	2014.	

	 			

	
About	the	Author	
Walter	 Tichy	 has	 been	 professor	 of	 Computer	 Science	 at	 Karlsruhe	 Institute	 of	 Technology	
(formerly	 University	 Karlsruhe),	 Germany,	 since	 1986.	 His	 major	 interests	 are	 software	
engineering	and	parallel	computing.	You	can	read	more	about	him	at	www.ipd.uka.de/Tichy.	

	 			

	
DOI:	10.1145/3084688	

